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Disclaimer
References within this manual to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily imply its endorsement or
recommendation by the United States Government. Neither the United States Government nor
any agency or branch thereof, nor any of their employees, makes any warranty, expressed or
implied, nor assumes any legal liability of responsibility for any third party�s use, or the results
of such use, of any information, apparatus, product, or process disclosed in this manual, nor
represents that its use by such third party would not infringe on privately owned rights. 
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FOREWORD

MARLAP is organized into two parts. Part I, consisting of Chapters 1 through 9, is intended
primarily for project planners and managers. Part I introduces the directed planning process
central to MARLAP and provides guidance on project planning with emphasis on radioanalytical
planning issues and radioanalytical data requirements. Part II, consisting of Chapters 10 through
20, is intended primarily for laboratory personnel and provides guidance in the relevant areas of
radioanalytical laboratory work. In addition, MARLAP contains seven appendices�labeled A
through G�that provide complementary information, detail background information, or concepts
pertinent to more than one chapter. Six chapters and one appendix are immediately followed by
one or more attachments that the authors believe will provide additional or more detailed
explanations of concepts discussed within the chapter. Attachments to chapters have letter
designators (e.g, Attachment �6A� or �3B�), while attachments to appendices are numbered (e.g.,
�B1�). Thus, �Section B.1.1� refers to section 1.1 of appendix B, while �Section B1.1� refers to
section 1 of attachment 1 to appendix B. Cross-references within the text are explicit in order to
avoid confusion.

Because of its length, the printed version of MARLAP is bound in three volumes. Volume I
(Chapters 1 through 9 and Appendices A through E) contains Part I. Because of its length, Part II
is split between Volumes II and III. Volume II (Chapters 10 through 17 and Appendix F) covers
most of the activities performed at radioanalytical laboratories, from field and sampling issues
that affect laboratory measurements through waste management. Volume III (Chapters 18
through 20 and Appendix G) covers laboratory quality control, measurement uncertainty and
detection and quantification capability. Each volume includes a table of contents, list of
acronyms and abbreviations, and a complete glossary of terms. 

MARLAP and its periodic revisions are available online at www.epa.gov/radiation/marlap and
www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1576/. The online version is updated
periodically and may differ from the last printed version. Although references to material found
on a web site bear the date the material was accessed, the material available on the date cited may
subsequently be removed from the site. Printed and CD-ROM versions of MARLAP are
available through the National Technical Information Service (NTIS). NTIS may be accessed
online at www.ntis.gov. The NTIS Sales Desk can be reached between 8:30 a.m. and 6:00 p.m.
Eastern Time, Monday through Friday at 1-800-553-6847; TDD (hearing impaired only) at 703-
487-4639 between 8:30 a.m. and 5:00 p.m Eastern Time, Monday through Friday; or fax at 703-
605-6900.

MARLAP is a living document, and future editions are already under consideration. Users are
urged to provide feedback on how MARLAP can be improved. While suggestions may not
always be acknowledged or adopted, commentors may be assured that they will be considered
carefully. Comments may be submitted electronically through a link on EPA�s MARLAP web
site (www.epa.gov/radiation/marlap).
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KPA . . . . . . . . kinetic phosphorimeter analysis 

LAN . . . . . . . . local area network
LANL . . . . . . . Los Alamos National Laboratory (DOE)
LBGR . . . . . . . lower bound of the gray region
LCL . . . . . . . . lower control limit
LCS . . . . . . . . laboratory control samples
LDPE . . . . . . . low-density polyethylene 
LEGe . . . . . . . low-energy germanium
LIMS . . . . . . . laboratory information management system
LLD . . . . . . . . lower limit of detection
LLNL . . . . . . . Lawrence Livermore National Laboratory (DOE)
LLRW . . . . . . low-level radioactive waste
LLRWPA . . . . Low Level Radioactive Waste Policy Act
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LOMI . . . . . . . low oxidation-state transition-metal ion 
LPC . . . . . . . . liquid-partition chromatography; liquid-phase chromatography 
LS . . . . . . . . . . liquid scintillation 
LSC . . . . . . . . liquid scintillation counter
LWL . . . . . . . . lower warning limit

MAPEP . . . . . Mixed Analyte Performance Evaluation Program (DOE)
MARSSIM . . . Multi-Agency Radiation Survey and Site Investigation Manual
MCA . . . . . . . multichannel analyzer
MCL . . . . . . . . maximum contaminant limit
MDA . . . . . . . minimum detectable amount; minimum detectable activity
MDC . . . . . . . minimum detectable concentration
MDL . . . . . . . . method detection limit
MeV . . . . . . . . mega electron volts
MIBK . . . . . . . methyl isobutyl ketone
min . . . . . . . . . minute[s]
MPa . . . . . . . . megapascals
MQC . . . . . . . minimum quantifiable concentration
MQO . . . . . . . measurement quality objective
MS . . . . . . . . . matrix spike; mass spectrometer
MSD . . . . . . . . matrix spike duplicate
MVRM . . . . . . method validation reference material

NAA . . . . . . . . neutron activation analysis
NaI(Tl) . . . . . . thallium-activated sodium iodide [detector]
NCP . . . . . . . . National Oil and Hazardous Substances Pollution Contingency Plan
NCRP . . . . . . . National Council on Radiation Protection and Measurement
NELAC . . . . . National Environmental Laboratory Accreditation Conference
NESHAP . . . . National Emission Standards for Hazardous Air Pollutants (EPA)
NIM . . . . . . . . nuclear instrumentation module 
NIST . . . . . . . . National Institute of Standards and Technology
NPL . . . . . . . . National Physics Laboratory (United Kingdom); National Priorities List (United

States)
NRC . . . . . . . . U.S. Nuclear Regulatory Commission
NRIP . . . . . . . NIST Radiochemistry Intercomparison Program 
NTA (NTTA) . nitrilotriacetate
NTU . . . . . . . . nephelometric turbidity units
NVLAP . . . . . National Voluntary Laboratory Accreditation Program (NIST)

OA . . . . . . . . . observational approach
OFHC . . . . . . . oxygen-free high-conductivity
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OFPP . . . . . . . Office of Federal Procurement Policy

φMR . . . . . . . . . required relative method uncertainty 
Pa . . . . . . . . . . pascals
PARCC . . . . . precision, accuracy, representativeness, completeness, and comparability
PBBO . . . . . . .  2-(4'-biphenylyl) 6-phenylbenzoxazole
PCB . . . . . . . . polychlorinated biphenyl
pCi . . . . . . . . . picocurie
pdf . . . . . . . . . probability density function
PE . . . . . . . . . . performance evaluation
PERALS . . . . . Photon Electron Rejecting Alpha Liquid Scintillation®

PFA . . . . . . . . perfluoroalcoholoxil�

PIC . . . . . . . . . pressurized ionization chamber
PIPS . . . . . . . . planar implanted passivated silicon [detector]
PM . . . . . . . . . project manager
PMT . . . . . . . . photomultiplier tube
PT . . . . . . . . . . performance testing
PTB . . . . . . . . Physikalisch-Technische bundesanstalt (Germany)
PTFE . . . . . . . polytetrafluoroethylene 
PUREX . . . . . plutonium uranium reduction extraction
PVC . . . . . . . . polyvinyl chloride

QA . . . . . . . . . quality assurance
QAP . . . . . . . . Quality Assessment Program (DOE)
QAPP . . . . . . . quality assurance project plan
QC . . . . . . . . . quality control

rad . . . . . . . . . radiation absorbed dose
RCRA . . . . . . . Resource Conservation and Recovery Act
REE . . . . . . . . rare earth elements
REGe . . . . . . . reverse-electrode germanium
rem . . . . . . . . . roentgen equivalent: man
RFP . . . . . . . . request for proposals
RFQ . . . . . . . . request for quotations
RI/FS . . . . . . . remedial investigation/feasibility study
RMDC . . . . . . required minimum detectable concentration
ROI . . . . . . . . . region of interest
RPD . . . . . . . . relative percent difference
RPM . . . . . . . . remedial project manager
RSD . . . . . . . . relative standard deviation
RSO . . . . . . . . radiation safety officer
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s . . . . . . . . . . . second[s]
SA . . . . . . . . . spike activity
SC . . . . . . . . . . critical value
SAFER . . . . . . Streamlined Approach for Environmental Restoration Program (DOE)
SAM . . . . . . . . site assessment manager
SAP . . . . . . . . sampling and analysis plan
SEDD . . . . . . . staged electronic data deliverable
SI . . . . . . . . . . international system of units
SMO . . . . . . . . sample management office[r]
SOP . . . . . . . . standard operating procedure
SOW . . . . . . . . statement of work
SQC . . . . . . . . statistical quality control
SPE . . . . . . . . . solid-phase extraction
SR . . . . . . . . . . unspiked sample result
SRM . . . . . . . . standard reference material
SSB . . . . . . . . silicon surface barrier [alpha detector]
SSR . . . . . . . . spiked sample result
Sv . . . . . . . . . . sievert[s]

t½ . . . . . . . . . . half-life
TAT . . . . . . . . turnaround time
TBP . . . . . . . . tributylphosphate
TC . . . . . . . . . to contain
TCLP . . . . . . . toxicity characteristic leaching procedure
TD . . . . . . . . . to deliver
TEC . . . . . . . . technical evaluation committee
TEDE . . . . . . . total effective dose equivalent 
TEC . . . . . . . . technical evaluation committee (USGS)
TES . . . . . . . . technical evaluation sheet (USGS)
TFM . . . . . . . . tetrafluorometoxil�

TIMS . . . . . . . thermal ionization mass spectrometry
TIOA . . . . . . . triisooctylamine
TLD . . . . . . . . thermoluminescent dosimeter
TnOA . . . . . . . tri-n-octylamine
TOPO . . . . . . . trioctylphosphinic oxide
TPO . . . . . . . . technical project officer
TPP . . . . . . . . . technical project planning
TPU . . . . . . . . total propagated uncertainty
TQM . . . . . . . . Total Quality Management
TRUEX . . . . . trans-uranium extraction
TSCA . . . . . . . Toxic Substances Control Act
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TSDF . . . . . . . treatment, storage, or disposal facility
tSIE . . . . . . . . transfomed spectral index of the external standard
TTA . . . . . . . . thenoyltrifluoroacetone

U . . . . . . . . . . . expanded uncertainty
uMR . . . . . . . . . required absolute method uncertainty
uc(y) . . . . . . . . combined standard uncertainty
UBGR . . . . . . upper bound of the gray region
UCL . . . . . . . . upper control limit
USACE . . . . . United States Army Corps of Engineers
USGS . . . . . . . United States Geological Survey 
UV . . . . . . . . . ultraviolet
UWL . . . . . . . upper warning limit

V . . . . . . . . . . . volt[s]

WCP . . . . . . . . waste certification plan

XML . . . . . . . . extensible mark-up language
XtGe® . . . . . . . extended-range germanium

y . . . . . . . . . . . year[s]
Y . . . . . . . . . . . response variable

ZnS(Ag) . . . . . silver-activated zinc sulfide [detector]





XXIIIJULY 2004 MARLAP

UNIT CONVERSION FACTORS

To Convert To Multiply by To Convert To Multiply by
Years (y) Seconds (s)

Minutes (min)
Hours (h)

3.16 × 107

5.26 × 105

8.77 × 103

s
min
h

y 3.17 × 10!8

1.90 × 10!6

1.14 × 10!4

Disintegrations
per second (dps)

Becquerels (Bq) 1.0 Bq dps 1.0

Bq
Bq/kg
Bq/m3

Bq/m3

Picocuries (pCi)
pCi/g
pCi/L
Bq/L

27.03
2.7 × 10!2

2.7 × 10!2

103

pCi
pCi/g
pCi/L
Bq/L

Bq
Bq/kg
Bq/m3

Bq/m3

3.7 × 10!2

37
37
10!3

Microcuries per
milliliter
(µCi/mL)

pCi/L 109 pCi/L µCi/mL 10!9

Disintegrations
per minute (dpm)

µCi
pCi

4.5 × 10!7

4.5 × 10!1
pCi dpm 2.22

Gallons (gal) Liters (L) 3.78 Liters Gallons 0.265
Gray (Gy) rad 100 rad Gy 10!2

Roentgen
Equivalent Man
(rem)

Sievert (Sv) 10!2 Sv rem 102



1A quality system is a structured and documented management framework that describes the policies, objectives,
principles, organizational authority, responsibilities, accountability, and implementation plan of an organization for
ensuring quality in its work processes, products (items), and services. The quality system provides for planning,
implementing, and assessing the work performed by the organization and for carrying out required quality assurance
and quality control (ANSI/ASQC E4, 1994). General requirements for testing laboratories can be found in ISO/IEC
17025. 
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18  LABORATORY QUALITY CONTROL

18.1 Introduction

This chapter addresses internal laboratory quality control (QC), the purpose of which is to
monitor performance, identify problems, and initiate corrective action. If project requirements are
more stringent than typical laboratory QC criteria, the project manager and the laboratory should
confer to see whether the laboratory can accommodate the project QC requirements. Project QC
requirements are addressed in Part I of MARLAP.

Laboratory data should be produced under a quality system1 that incorporates planning,
implementing, and internal assessment of the work performed by the laboratory, including QC.
MARLAP fully endorses the need for a laboratory quality system and a quality manual that
delineates the quality assurance (QA) policies and QC practices of the laboratory. A laboratory�s
quality system should ensure that laboratory processes and measurements are �in statistical
control,� which means that the distribution of measured results is stable.

This chapter�s purpose is to provide guidance to laboratory staff on those activities and profes-
sional practices a radioanalytical laboratory should undertake to produce data of known quality.
This chapter also shows how to use statistical techniques to monitor specific measures of the
analytical process to indicate the level of control of the analytical process within the laboratory.
These measures are called �performance indicators,� and the statistical techniques involve the
use of control charts. Monitoring performance indicators through control charts enables the
identification of trends. The laboratory can then address analytical problems and help improve
the analytical process. Section 18.3.2 and Attachment 18A at the end of this chapter provide
examples of several types of charts. The use of
statistical techniques is the preferred method for
implementing quality control in the laboratory
(Attachment 18B). The chapter also identifies
specific performance indicators, the principles
that govern their use, indications and under-
lying causes of excursions, statistical means of
evaluating performance indicators, and
examples of root-cause evaluations.

Contents
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This chapter addresses the control of the analytical process in the laboratory, as distinct from
meeting the typical analytical needs of a specific project. Quality control provides quantitative
estimates of analysis and measurement controls that can be used to determine compliance with
project objectives.

18.1.1 Organization of Chapter

Chapter 18 has five major sections in addition to this introduction. Section 18.2 provides a
general overview of QC and its application in the laboratory setting. Section 18.3 discusses the
importance of evaluating performance indicators and provides statistical means for their evalua-
tion. Sections 18.4 and 18.5 identify primary radiochemistry and instrumentation performance
indicators, respectively, and discuss each in detail. Section 18.6 discusses other aspects of the
analytical process that require scrutiny but are not formally considered performance indicators.

18.1.2 Format

The chapter is presented in a different format than the preceding chapters in order to highlight the
performance indicators and to give examples. For each performance indicator, general guidance
is provided in the format shown below.

Issue: Defines and summarizes the performance indicator

Discussion: Identifies those matters important to the performance indicator, including:

  � What is the performance indicator and how does it work? 

  � Why is the performance indicator important, and what is its impact on the quality of the
measurement?

  � What is the relationship of the performance indicator and the combined standard uncertainty
derived for the analytical method? 

  � What are the acceptable limits of the performance indicator? 

  � What are the key assumptions underlying the performance indicator? 

  � What limits and cautions are associated with the assumptions made?

  � How sensitive is the quality of the measurement to the assumptions made?

  � What is the appropriate frequency for assessing this performance indicator?
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Excursions: �Excursions� are departures from the expected condition. This section addresses the
likely types of excursions encountered during laboratory analysis and explains what each may
indicate. This section also discusses the potential reasons for these excursions and the
implications for the analytical results.

Examples: Where appropriate, this section provides typical examples of excursions, potential
reasons for excursions, and additional information.

18.2 Quality Control

Quality control includes all technical activities that measure the attributes and performance of a
process, item, or service against defined standards to verify that they meet the stated require-
ments established by the customer. It also includes operational techniques and activities that are
used to fulfill requirements for quality (ANSI/ASQC E4, 1994). 

QC may not always detect blunders. Good laboratory practices, in addition to adherence to
standard operating procedures (SOPs), are part of the overall QA/QC aspects needed to check the
laboratory�s performance. To monitor and control quality, laboratories use performance indica-
tors, which are instrument- or protocol-related parameters that are routinely monitored to assess
the laboratory�s estimate of measurement uncertainty, precision, bias, etc. Initially, these para-
meters are used to maintain or demonstrate control over the analytical process. The performance
indicators should be tracked by appropriate personnel. If the performance indicator control limits
are exceeded, management should be informed and corrective action should be initiated. 

Figure 18.1 lists some of the potential causes for radioanalytical control excursions. By no means
is the list complete, and the reader should be aware of additional potential causes of excursions
that are presented in the rest of this chapter and the other chapters. Many problems are complex
and have multiple components that could complicate the search for causes of protocol or instru-
ment related excursions. A metrologist or radiochemist should be consulted to identify and
remedy any analytical problems.

18.3 Evaluation of Performance Indicators

18.3.1 Importance of Evaluating Performance Indicators

As stated previously, performance indicators are measures of the analytical process that the
laboratory monitors as part of its routine QC program. Performance indicators demonstrate
whether the analytical process is performing as planned, when it has exhibited a statistical
anomaly that requires investigation, and when a system has failed. Accordingly, monitoring
performance indicators using established statistical techniques provides the laboratory with an
effective tool for self assessment that allows the identification of trends or conditions that, while
still within the established bounds of acceptability, are drifting or trending out of control. These
conditions can be addressed prospectively, allowing the laboratory to maintain analytical control.
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Additionally, this process allows the development of a data base regarding a protocol�s or
system�s behavior over time or under a specified set of conditions.

LOSS OF ANALYTICAL CONTROL

RADIOCHEMICAL
PROCESSING

Processing difficulty

Questionable reagent
purity

Low tracer/carrier
recovery

Excessive tracer/carrier
recovery

Inaccurate aliquanting of
tracer/carrier

Sample aliquanting
inaccuracy

Cross-contamination

Inadequate dissolution of
sample

Complex matrix

Sample heterogeneity

Ineffective chemical
isolation or separation:
  � chemical/radionucli

de interferences
  � improper carrier

yield
  � uncompensated

quench
  � improper/inaccurate

ingrowth factors
  � variable blank and

analytical bias

Laboratory blunder

SOURCE
PREPARATION

Poor mounting

Poor plating

Improper
geometry

Incorrect thin
plastic film
thickness

Improper plating
on the planchet

Excessive source
mass

Uncorrected self
absorption

Quenching

Recoil
contamination

Laboratory
blunder

INSTRUMENTATION

Electronic malfunction
  � preamplifier
  � power supply
  � guard
  � analog-to-digital convertor
  � amplifier gain
  � high voltage
  � discriminator
  � pole zero
  � shape constant

Improper source or sample geometry

Poor counting statistics

Poor detector resolution

Detector contamination

Recoil contamination

Inappropriate/out-of-date efficiency,
background or calibration factor

Background shift

Improper crosstalk factors

Incorrect nuclear transformation
data or other constants

Peak/calibration shift

Counting gas
  � pressure too high, too low, or

variable
  � gas impurity

Loss of vacuum/coolant

Temperature and humidity
fluctuation

Laboratory blunder

OTHER

Data transcription error

Incorrect units

Calculation error

Software limitation

Inadequate/no removal
of peak interferences

Computer problem

Loss of electrical power

Electrical power
fluctuations

Mislabeling

Loss of sample

Insufficient sample
information

Data processing
problem

Interfering
radionuclides

Laboratory blunder

FIGURE 18.1 � Problems leading to loss of analytical control
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18.3.2 Statistical Means of Evaluating Performance Indicators � Control Charts

The primary tool for statistical quality control is the control chart (see Attachment 18A). The
theory that underlies a control chart is statistical hypothesis testing (see NIST/SEMATECH e-
Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2003). The
implementation of a control chart makes the theory transparent to the average user and reduces
the process of statistical inference to answering simple questions, such as, �Is the measured
parameter greater than the upper control limit?� or �Is the measured parameter in the warning
region?�

In theory, to test whether a parameter θ is above or below a certain value θ0, a test statistic is
defined and its distribution is determined under the assumption that θ = θ0 (the null hypothesis).
The value of the statistic is calculated and compared to critical values to test the assumption. In
practice, a control chart is designed so that a non-statistician can perform these tests easily by
comparing the measured value of the parameter to control limits and warning limits.

Most control charts do not implement hypothesis tests in a rigorous manner that allows decision
error rates to be precisely determined. The charts are intended to be simple and practical tools for
use even in situations where the assumptions needed for a rigorous test are not verifiable.

Every control chart has control limits, which define the acceptable range of the monitored
variable. Many charts have both upper and lower limits. However, when changes in only one
direction are of concern, only one limit is necessary. Most control charts have a central line, or
reference line, which is an estimate of the expected value of the monitored variable. Many
control charts also have warning limits, which lie between the central line and the control limits.

By definition, control limits are action limits. A single measured value that falls outside these
limits normally requires that one stop the measurement process, investigate the problem, and if
necessary take corrective action. The warning limits are optional but recommended, since they
help one to identify and investigate possible problems before control limits are exceeded.

Types of Control Charts: Control charts based on grouped observations often are more power-
ful tools for detecting shifts of the monitored variable than charts based on individual observa-
tions. Average charts, or  charts, are used to monitor the arithmetic means of measured valuesX
obtained in �rational subgroups,� which are subgroups of equal size chosen to ensure that the
measurement variability within each subgroup is likely to represent only the inherent variability
of the measurement process produced by non-assignable causes (see Attachment 18A). When an

 chart is used, a range chart, or R chart, is generally used in tandem to monitor within-groupX
variability. (The range of a set of values is the difference between the largest value and the
smallest.)
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A control chart for individual values (X chart or I chart) is used when it is impractical to obtain
measured values in the groups needed for an  chart. In this case, a moving range chart (MRX
chart) is often used as well to monitor variability. The moving range chart is an R chart based on
the absolute differences between consecutive measured values.

A control chart may or may not be based on a particular type of data distribution. Most control
charts use limits derived from the normal distribution but are intended to be used for data with
almost any distribution (ISO 8258). However, when data obtained from radiation counters are
monitored, the Poisson distribution may often be assumed. The standard types of control charts
for Poisson data in industrial applications are called �c charts� (for total counts) and �u charts�
(for count rates). A third type of Poisson control chart, which is a variant of the u chart, is
frequently used to monitor radiation counter efficiency. When the data distribution is Poisson,
separate charts for monitoring the value of the parameter and its variability are generally
unnecessary because the mean and variance of a Poisson distribution are numerically equal.

The following documents provide more guidance on the use of control charts:

  � ASTM D6299. Standard Practice for Applying Statistical Quality Assurance Techniques to
Evaluate Analytical Measurement System Performance.

  � ASTM E882. Standard Guide for Accountability and Quality Control in the Chemical
Analysis Laboratory. 

  � ANSI/ISO/ASQC A3534-2. Statistics�Vocabulary and Symbols�Statistical Quality Control.

  � ISO 7870. Control Charts � General Guide and Introduction.

  � ISO 7873. Control Charts for Arithmetic Average with Warning Limits.

  � ISO 7966. Acceptance Control Charts.

  � ISO 8258. Shewhart Control Charts.

  � American Society for Testing and Materials (ASTM) MNL 7, Manual on Presentation of
Data and Control Chart Analysis ASTM Manual Series, 7th Edition, 2002.

Figure 18.2 illustrates a typical control chart using counting data from analysis of a reference
material (with limits corrected for decay) showing the statistical nature of the chart. The
applicability of control chart techniques is based on the assumption that laboratory data
approximate a normal distribution. The counting data plotted graphically represent the test results
on the vertical axis and the scale order or time sequence in which the measurements were
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FIGURE 18.2 � Control chart for daily counting of a standard reference source, with
limits corrected for decay

obtained on the horizontal axis. The mean of the measurements is represented by the central line
(CL), and the limits of dispersion in terms of standard deviation are represented by the upper and
lower warning and control limits (UWL, UCL, LWL, LCL). The warning limits are usually 2
standard deviations from the mean and the control limits are 3 standard deviations from the
mean. See Attachment 18A for more discussion on establishing control charts.

18.3.3 Tolerance Limits

In some situations, the acceptance limits for a QC parameter may be based on professional
judgment rather than statistics. MARLAP uses the term tolerance limits to refer to these
judgment-based acceptance limits. (Note that this term has another meaning in statistics.)
Tolerance limits are used much like the control limits on a control chart to determine whether
investigation and corrective action are required. (They may also be called �go/no go limits.�)
Tolerance limits may be used when it is important to detect large changes in the variable. For
example, tolerance limits could be used when variability within the limits has no significant
impact on the measurement process. 

An example of a variable that may sometimes appear to shift by small amounts is the resolution
of a high-purity germanium detector. It also tends to be true that even statistically significant
changes in the resolution are often so small that they have no practically significant effect on
analytical results. So, it is reasonable to specify tolerance limits for the resolution (FWHM)
rather than statistically based control limits.

Another example of a variable that is commonly monitored using tolerance limits is the chemical
yield for an analytical process. Typically the yield is measured with relatively small uncertainty;
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so, fluctuations of the yield over some range of values may have no substantial impact on the
quality of the measurement. However, a yield that is significantly greater than 100 percent
generally indicates a spurious error of some kind, and a yield that is very low may indicate a
spurious error or other problem in the measurement process that deserves investigation (see
Sections 18.6.4, �Interferences�; 18.6.5, �Negative Results�; and 18.6.7, �Calibration of
Apparatus Used for Weight and Volume Measurements�).

A graphical representation of the history of the monitored variable is useful even when control
charts are not used. When the data are plotted on a graph with the tolerance limits drawn as lines
(like the control limits on a control chart), the graph is sometimes called a tolerance chart.

18.3.4 Measurement Uncertainty

Issue: Every measured result is uncertain to some degree. If the measurement uncertainties are
large relative to the tolerances needed for decision making, the data may not be useful for their
intended purpose. A discussion of measurement uncertainty is contained in Chapter 19, and the
terms used in this section are defined in that chapter and in the Glossary.

Discussion: In order to determine the significance of a sample result, all reported values should
be accompanied by the laboratory�s best estimate of the uncertainty associated with the result.
The �combined standard uncertainty� (one-sigma uncertainty) is obtained by propagating the
uncertainties of all the input quantities that contribute to the calculation of the derived value
(Chapter 19). 

The combined standard uncertainty is used to indicate the statistical confidence in interpreting
the performance indicator�s ability to assess analytical quality. The estimated statistical confi-
dence level that is usually associated with 1 combined standard uncertainty is about 68 percent,
the confidence level for 2 combined standard uncertainties is about 95 percent, and the confi-
dence level for 3 combined standard uncertainties is about 99 percent. It is important that the
combined standard uncertainty be a fair estimate because it will indicate when the analytical
process could be approaching the limits of statistical control and corrective actions should be
initiated. A performance indicator exceeding ±2 combined standard uncertainty limits from the
indicator�s historical mean value may indicate that corrective action should be considered, and a
performance indicator exceeding ±3 combined standard uncertainty limits from the indicator�s
historical mean value may indicate that an investigation must be conducted and corrective action
may be necessary. Because statistical confidence never reaches 100 percent, it probably would be
prudent to confirm the measurement for the performance indicator when it exceeds ±2 combined
standard uncertainty limits. If the performance indicator value for repeat measurements do not
exceed ±2 combined standard uncertainty limits, one may conclude that the first measurement
was a statistically allowable event. However, if the excursion is repeated, appropriate investiga-
tive actions should be considered. 
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Most of the significant sources of uncertainty in radiochemical data are known to a laboratory
and can be estimated. These include uncertainties associated with sample and background count-
ing, radiochemical yield determination, efficiency calibration, and blank assessment. Other less
easily defined but significant sources of uncertainty include those associated with self-absorption
and quench correction, sample density correction, sample geometry variation, gamma photopeak
area determination, determination of sample volume or weight, and dead time correction.

The uncertainty of a measured value is controllable, within certain limits, by decreasing the
uncertainty associated with some input parameters. For samples containing low levels of radio-
activity, a large component of the combined standard uncertainty may be associated with the
instrumental assessment (counting) of the sample aliquant, i.e., the standard uncertainty of the net
count (gross sample count minus background count). Increasing the total net count accumulated,
or decreasing the uncertainty of the instrument background, or both, will decrease the counting
uncertainty. Changes that may be made to decrease the counting uncertainty include increasing
the counting time for the sample or background, increasing the sample aliquant size (unless the
sample geometry, quench, or self-absorption factors offset the gain in total radioactivity counted),
using a more efficient geometry or detector, using an instrument with a lower background, and
reanalyzing the sample to obtain a greater radiochemical yield. It also may be possible to
concentrate the sample, which has the equivalent effect of increasing the sample aliquant size.

18.4 Radiochemistry Performance Indicators

Section 18.3 discussed how to evaluate radiochemistry performance indicators using statistically
based control chart techniques. Any of the indicators below (blanks, replicates, laboratory control
samples, matrix spikes, certified reference material, or tracer yield) can be evaluated using the
control chart techniques. Analysts can use numerical performance indicators to identify loss of
control. Control charts will assist laboratory personnel in identifying the quality trends and
excursions of any performance indicator.
 
18.4.1 Method and Reagent Blank

Issue: A method blank is a sample of a matrix as similar as practical to the associated samples
that is free from the analytes (radionuclides) of interest to the extent possible. The method blank
is processed simultaneously with, and under the same conditions as, samples through all steps of
the analytical procedures. A reagent blank consists of the analytical reagent(s) in the procedure
without the target analyte or sample matrix, introduced into the analytical procedure at the
appropriate point and carried through all subsequent steps to determine the contribution of the
reagents and of the involved analytical steps.

Blank samples are used to determine whether any radionuclide contamination is introduced by
the measurement process. They assist in the control of any contamination introduced by the
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laboratory. Ideally, no target analytes should be present in the blank at detectable concentrations.
If that is not possible (e.g., for naturally occurring radionuclides), those radionuclides should be
extremely well-characterized and tracked. Control charts can be used to track these radionuclide
levels in blanks. Using X charts, the laboratory can establish a program that evaluates the levels
and trends of radionuclides in the different laboratory blanks. The techniques for establishing
such a control chart program are described in Attachment 18A. 

Discussion: The method blank is assumed to be representative of all samples in the batch with
respect to the matrix and contamination assessment. When practical, it consists of the same or
equivalent medium as the analytical samples, such as a deionized water blank for aqueous
samples. Soil blanks are often prepared using �clean sand,� commercially available fine-grained
or beach sand whose inherent concentrations of target radionuclides are small and have been
characterized sufficiently by the laboratory to allow its use as a blank. This approach may not be
appropriate for very low-level analyses. Powdered, natural-matrix Standard Reference Materials
(SRMs) are commercially available from the National Institute of Standards and Technology
(NIST) and also may be suitable (Section 18.4.5). However, due to the natural variability of soils,
each choice of method blank medium must be evaluated by the laboratory prior to use. The
results of method blanks typically are not used to correct sample activities but only to monitor for
contamination.

Reagent blanks are matrix-independent and assess any contamination only from the reagents and
lab-ware. They may be used to correct sample activities for the contribution of naturally
occurring radionuclides in the reagents, and used like method blanks, to check for unexpected
contamination. The results of the reagent blank analyses should be reported separately by the
analytical laboratory. How their values are used in determining the final sample results should be
addressed during the final data assessment.

It is common practice for some laboratories to add the reagents into a volume of deionized water
equal to the sample volume, while other laboratories simply add the required reagents to an
empty container and process it as an analytical sample. In either case, it should be noted that the
reagent blank is not monitoring the entire analytical process. The fundamental issue for each
laboratory is to decide on the appropriate reagent blank necessary to obtain the needed informa-
tion on the measurement system. Considerable variability exists among laboratories in the use
and preparation of reagent blanks.

In general, the reagent blank�s concentration of analyte is expected to be small compared to that
of the sample. However, for some low-activity environmental samples this may not be the case,
and the correction becomes increasingly important as the concentration of the analyte in the
sample approaches background concentrations. In these cases, care should be taken to accurately
quantify the levels of radionuclides in the reagent blanks. 
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ZBlank '
x

uc(x) (18.1)

It is important to minimize radionuclide concentrations in the blanks and bring these levels under
control. This is usually achieved through careful selection of reagents, maintaining laboratory
and counting areas free from contamination, and by segregating high and low activity samples.
Thorough documentation of all blank values is essential to allow for the application of statistical
tests to evaluate potentially anomalous values and delineate their extent.

Ideally, the analyte concentration in a method or reagent blank should be as close to zero as
possible, and replicate measurement of the blanks should be consistent within counting statistics.
Acceptance criteria for blank results should be established and applied to all data, and should
include warning and control limits (Section 18.3.2, �Statistical Means of Evaluating Performance
Indicators � Control Charts�). Blank values require scrutiny as part of the data evaluation and
validation process for each analytical batch. Should restocking of reagents or other wholesale
laboratory changes occur during a project, the method and reagent blanks prepared under the new
conditions should be re-evaluated to ensure that they continue to be within established criteria.

An example of a numerical performance indicator for a method blank or a reagent blank used to
monitor for unexpected contamination is

where x denotes the measured blank activity and uc(x) denotes its combined standard uncertainty.
Warning limits for ZBlank are ±2 and control limits are ±3. As mentioned earlier, if a reagent blank
is used to blank-correct sample results, the blank results should be evaluated using control charts.

Typically, one method blank and/or reagent blank is analyzed with each batch or grouping of
analytical samples regardless of batch size. Situations may occur where more frequent blanks are
required to ensure that analytical conditions are stable, particularly when analyzing high and low
concentration samples in the same analytical batch, or when instruments, reagents, or analytical
method are suspect.

In general, corrective actions include procurement control of reagents, good laboratory cleaning
practices, sample segregation according to anticipated concentrations, and instrument-related
concerns, as discussed in this section. Good laboratory cleaning protocols should incorporate the
evaluation of method and reagent blank performance to indicate if current practices are adequate.
Instrument background data indicate a system�s stability, and can be used to pinpoint the source
of contamination, as can routine contamination (removable and fixed) surveys of laboratory and
counting areas that are performed by the organization�s health physics or radiation safety
personnel.

Excursion: Blank changes can be grouped into three general categories: rapid changes, gradual
increase or decrease, and highly variable changes. These are represented in Figure 18.3 and
described below.
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BLANK CONTAMINATION

RAPID CHANGES

  � CROSS CONTAMINATION
  S Residual contamination

from high concentration
samples

  � PROCEDURE FAILURE �
INCOMPLETE SEPARATION

  � INSTRUMENT INSTABILITY

  � INTRODUCTION OF
CONTAMINATED REAGENT

  � INTRODUCTION OF NEW
REAGENT BATCH OF
DIFFERENT COMPOSITION

GRADUAL CHANGES

  � BUILDUP OF
CONTAMINATION
  S Glassware/laboratory

areas require thorough
cleaning

  � SUSPECTED REAGENTS

  � INAPPROPRIATE
PROCEDURES

  � INSTABILITY OF CHEMICAL
YIELD MONITOR

  � INSTRUMENT DRIFT &
DETERIORATION

HIGH VARIABILITY

  � PROCEDURE FAILURE

  � INSTRUMENT INSTABILITY

  � IMPROPER SEGREGATION OF
HIGH & LOW ACTIVITY
SAMPLES

FIGURE 18.3 � Three general categories of blank changes

Rapid Changes: A sudden change in a blank value indicates the existence of a condition
requiring immediate attention. Sudden changes often are caused by the introduction of a
contaminant from high concentration samples, impure reagents, or contaminated sample
preparation areas. Two potential sources of increased values in blanks are laboratory cleaning
practices and contaminated reagents. A laboratory protocol should be established for cleaning
and monitoring contamination from laboratory ware and equipment. Laboratory reagents,
either as newly prepared solutions or from newly opened bottles, also can be a source of
unexpected contamination. Significant increases in blank radioactivity should suggest these
two as possible sources, and if confirmed, they should be corrected. Particular attention
should be paid to the samples analyzed directly prior to the contaminated blank, since small
amounts of residues from these samples can contaminate the instrument and have large
effects on subsequent results when analyzing samples at or near environmental background. It
may be necessary to take swipe or smear samples of questionable areas to identify the
contaminant�s source followed by a thorough cleaning or decontamination of all affected
areas. Additionally, method or reagent blank values that are suddenly depressed should be
investigated and may indicate other problems, including instrument malfunction like a loss of
counting gas, incomplete chemical separation during the chemical preparation, or the failure
to add necessary reagents. These other problems may be reflected in other areas, such as
instrument performance checks or tracer yields. 
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Gradual Changes: Gradually increasing blank values indicate the need to inspect all sample
preparation and counting areas for sources of residual contamination. Often housekeeping or
routine contamination control details such as cleaning glassware or instrument counting
chambers are sufficient to bring blank values under control. Alternatively, gradually decreas-
ing blank values warrant scrutiny with respect to proper instrument settings and procedural
related problems like a lack of tracer/sample exchange, failure of chemical separation reac-
tions, or the addition of all necessary reagents. The importance of documenting method and
reagent blank values in this regard cannot be overemphasized, since data evaluation and
trending analyses are impossible without complete records.

High Variability: Because method blank values are expected to be near zero, the degree of
variability they exhibit should reflect the statistical variation inherent in determinations near
these levels. Large variations in blank values typically indicate problems related to
instruments or the analytical process, as discussed in the two previous sections.

18.4.2 Laboratory Replicates

Issue: A laboratory replicate is two or more aliquants taken at the first subsampling event,
normally after homogenization. In the event that there is no subsampling (when the method calls
for using the entire sample) replicate analysis typically involves counting the prepared sample
twice. The results of laboratory replicates are used to evaluate the method precision. Note that
counting a sample twice only assesses the instrument portion of the measurement process.

Precision is a measure of agreement among replicate measurements of the same property under
prescribed similar conditions. Precision is a fundamental aspect of the analytical process and
should be evaluated routinely as part of the laboratory�s quality system. Evaluation typically is
performed using multiple analysis of the same sample (blanks, spikes, blinds, reference
materials, performance evaluation samples, etc.), in whole or part, and evaluating the analyses
relative to a statistically based criterion. The range of sample types requires that the sample
matrix�s effects on the precision be captured and evaluated by the laboratory�s routine quality
control practices. The reproducibility of analytical results should be evaluated by replicates to
establish this uncertainty component. 

Discussion: The purpose for measuring precision is to determine whether the laboratory can
execute an analytical method consistently and thus obtain results of acceptable variability.
Analytical samples cover a range of physical forms or matrices, from homogeneous samples like
finished drinking water to complex soils or heterogeneous wastes, and each matrix has the
potential to affect a protocol�s precision.

In general, precision for aqueous samples tends to be less affected by sample heterogeneity than
other media because if the sample�s constituents are dissolved the sample is essentially homo-
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ZRep '
x1 & x2

u 2
c (x1) % u 2

c (x2)
(18.2)

geneous. This facilitates dividing the samples into equivalents fractions or aliquants. When
appropriate, acidification of a sample to pH less than 2 should be done prior to dividing it for
replicate analysis. Multi-phase and high-solid-content samples that are heterogeneous are more
problematic. 

The acceptance criterion for precision should be related to the combined standard uncertainties of
the measured results. The uncertainty of a result may depend on many factors (e.g., dissolved
solids in water or particle sizes of soil), but such factors should affect the acceptance criterion
only through their effect on the standard uncertainty.

As an alternative to sample duplicates, a matrix spike duplicate is sometimes used as an indicator
of the reproducibility of the analytical precision, as discussed in Section 18.4.3. A matrix spike
duplicate is treated in the same manner as an unspiked replicate: both samples (original and
duplicate) are processed identically to the other samples in the batch, and each aliquant is treated
as an individual sample. 

If the sample has multiple phases, the phases should be separated for individual analysis. For
heterogenous materials, multiple analyses should be used, or the combined standard uncertainty
of the results should be increased, to account for subsampling error (Appendix F). A typical
frequency for replicate analyses is a minimum of one per analytical batch, regardless of batch
size. �Batch� is defined as a given number of samples of similar matrix type with associated QC
samples analyzed under the sample conditions at approximately the same time.

All analytical batches should be evaluated with respect to precision, whether by using replicates
or matrix spike duplicates. This is done typically by the use of an acceptance criterion that
derives a statistic that quantifies the difference between two values obtained by analyzing the
same sample. Limits are then placed on the criterion, and data for any batch in excess of the
criterion require investigation and corrective action as appropriate. An example of a numerical
performance indicator for laboratory replicates is

where x1 and x2 denote the two measured activity concentrations and uc(x1) and uc(x2) denote their
respective combined standard uncertainties. Warning limits for ZRep are ±2 and control limits
are ±3. 

Excursions: A regularly scheduled evaluation of precision with respect to the acceptance
criterion should be an integral part of the laboratory quality system. Careful attention should be
paid to the nature and anticipated analyte concentrations of all samples processed by the labora-
tory. Prospective identification of samples where precision is expected to be problematic often



Laboratory Quality Control

18-15JULY 2004 MARLAP

can address difficulties in this area. The choice of appropriate analytical method and analyst
training are also important. An analyst needs to be familiar with specific steps in the procedure
that provide an indication of incomplete processing.

Precision exhibits a range of values and depends in part on sample matrix and activity, assuming
correct execution of the analytical method. Small changes, positive and negative, are expected
and should be captured in the acceptance criterion�s range. It is also sensitive to sample hetero-
geneity or errors in processing, such as incomplete chemical separation or sample dissolution,
and lack of tracer or carrier equilibration. When performance indicators for precision are outside
acceptance criteria, the laboratory should determine the reasons why and implement corrective
actions.

Certain samples will exhibit higher variability because of their matrix, or the proximity of their
analyte concentration to ambient background, as discussed previously. Consideration should be
given to cases where a matrix requires the development and implementation of a specific accep-
tance criterion. The main causes for lack of precision (Figure 18.4) can be grouped as follows:

  � Laboratory subsampling � subsampling techniques produced two dissimilar aliquants from
one sample, and the original and duplicate are not the same. An analyst should be careful to
ensure that the sample is thoroughly homogenized before subsampling.

DECREASE IN PRECISION

PROCEDURE PROBLEM
  � Incomplete separation
  � Improper processing
  � Inappropriate or no tracer/carrier
  � Inadequate analyst training
  � Wrong reagent concentration
  � Wrong ambient laboratory

conditions
  � Reagent/labware change
  � Incomplete removal of

interferences
  � Insufficient method ruggedness

INSTRUMENT PROBLEM
  � Counting instability
  � Background variability
  � Contamination

MATRIX PROBLEM 
  � Matrix incompatible
  � Excessive heterogeneity

LABORATORY SUBSAMPLING
PROBLEM
  �  Replicates not equivalent

FIGURE 18.4 � Failed performance indicator: replicates

  � Matrix � Sample constituents interfere with preparation chemistry, e.g., coprecipitation of
interfering nontarget radionuclides from sample or excessive dissolved solids.

  � Counting statistics � Sample activity is so low that small statistical variations in background
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cause disproportionate responses.

  � Contamination � Intermittent contamination from measurements system, glassware, etc.,
produces anomalous data for the original sample, but not the duplicate/replicate.

  � Other � Failed chemical process, failed instrumentation, training, failed lab environment,
failed procurement control.

18.4.3 Laboratory Control Samples, Matrix Spikes, and Matrix Spike Duplicates

Issue: A laboratory control sample (LCS) is a QC sample of known composition (reference
material) or an artificial sample, created by fortifying a clean material similar in nature to the
environmental sample. The LCS is prepared and analyzed in the same manner as the environ-
mental sample. A matrix spike is typically an aliquant of a sample fortified (spiked) with known
quantities of target radionuclides and subjected to the entire analytical procedure to establish if
the method or procedure is appropriate for the analysis of a particular matrix. In some cases,
specifically prepared samples of characterized materials that contain or are spiked with the target
radionuclide and are consistent with the sample matrix may be used as matrix spikes. Matrix
spikes should be used for those methods that do not include a radiotracer or internal carrier in the
chemical separation process and where there is sufficient sample. A matrix spike duplicate
(MSD) is a second-replicate matrix spike that is used to evaluate the method precision. Matrix
spike duplicates are used in a similar fashion as laboratory sample replicates, but in cases where
there are insufficient quantities of target radionuclides in the laboratory sample replicates to
provide statistically meaningful results.

An important performance indicator is the ability to ensure that the analytical methods employed
obtain data that are representative of the true activity in a sample, i.e., produce data that are
accurate. The routine analysis of spiked samples provide data for an evaluation of the labora-
tory�s reported measurement uncertainty and allow for the determination of bias, if one exists.
Evaluation is typically performed using prepared samples consisting of media equivalent to a
routine analytical sample with a known, measurable amount of the analyte of interest. Upon
completion of the analysis, the results are compared to the known or accepted value, and the
agreement is evaluated using a predetermined criterion. The range of sample types assayed in a
laboratory may require the preparation of spikes using several sample media. Use of matrix
spiked samples will reflect the analytical method�s ability to make accurate quantitative
determinations in the presence of the matrix.

Discussion: As stated previously, analytical samples cover a range of physical forms or matrices,
and each matrix can change a method�s expected accuracy. Tracking sets of LCS and matrix
spike results can give laboratory personnel an indication of the magnitude of an observed method
bias. Care must be taken when analyzing site specific matrix spike results because these matrices
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may be very complex and subject to large variability. In general, the variability of matrix spikes
in aqueous samples tends to be less affected than other media like soils or heterogeneous
mixtures. However, multi-phase or high-solid-content fluids and brackish or saline waters may
be more problematic.

The analyst should carefully consider the spiking levels for laboratory control samples and matrix
spikes. Spikes and LCSs may be prepared near the lower limits of detection to test the method�s
performance on clean samples or samples containing small quantities of the target analytes.
Conversely, matrix spikes and LCSs may be spiked at high levels for samples having high
concentrations of target analytes. The laboratory should try to spike at or near the action level or
level of interest for the project. 

Examples of numerical performance indicators for laboratory control samples and matrix spikes
are

where x is the measured value of the spiked sample, d is the spike concentration added, x0 is the
measured concentration of the unspiked sample, and uc

2(x), uc
2(d), and uc

2(x0) are the squares of
the respective standard uncertainties. The warning limits for either of these indicators are ±2 and
the control limits are ±3. 

Excursions: Excursions in the LCSs and MSs can be used to identify various out of control
situations. The advantage to the LCS is that the sample matrix is always the same so matrix
effects should not be a factor in evaluating excursions. A rapid and one-time excursion in the
LCS usually indicates that a mistake was made in the procedure. A rapid change with continued
occurrences suggest that something occurred that is out of the ordinary, such as a new analyst
performing the procedure or a new standard solution or new reagents being used. If an LCS
shows elevated concentrations, analysts should check for contamination sources or poorly
prepared spiking solutions. Slow changes showing a trend usually indicate degradation or
contamination of equipment or reagents and may be indicative of bias and should be investigated.

Excursions of MSs can be difficult to interpret if the matrix changes from batch to batch.
However, an excursion may indicate that the method is not appropriate for a particular matrix. If
the MS shows lower than expected concentrations, the analyst should check for poor techniques
or expired or poorly prepared reagents and spiking solutions. When the chemical yield of a
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process is determined through a stable isotopic carrier, lower-than-expected analyte concentra-
tions may result from inherent quantities of the stable isotope in the sample matrix.

Elevated or depressed results for site-specific MSs need to be interpreted in conjunction with the
results from LCSs. If both the LCS and site-specific MS results are elevated or depressed then
the cause is usually internal to the laboratory. If only the site-specific MS is depressed or
elevated, the cause usually is due to the matrix.

18.4.4 Certified Reference Materials

Issue: Certified reference materials (CRMs) are well-characterized, stable, homogeneous
materials with physical or chemical properties that are known within specified uncertainty limits.
Laboratories that analyze CRMs can compare their performance to the certified concentration
and uncertainty levels. CRMs are used for the calibration of an apparatus or the assessment of a
measurement method. 

Discussion: Metrology organizations issue CRMs in various matrices with critically evaluated
concentration values for the radionuclide constituents. A CRM issued by NIST or under license
from NIST is called a �standard reference material� (SRM). The usefulness of a reference
material depends on the characterization of the radionuclide source, activity levels, and their
estimated uncertainties.

CRMs can be used as internal laboratory QC samples to evaluate the ability of analytical methods
to handle the matrix. CRMs need not be known to the analyst but can be introduced into the
analytical stream as a blind. Comparison of analytical results of CRMs to their certified values
provides linkage to the NIST radioactivity primary standards and a measure of method accuracy.

The planning that goes into the preparation of a CRM involves the selection of analytical
techniques that have adequate sensitivity and precision for specific analyses. It has become
increasingly important to have available well-characterized CRMs of a natural �matrix� type,
which may be used in laboratory tests of measurements of environmental radioactivity. Such
materials may be used in the evaluation of competing analytical methods, and also in the
cross-comparison of interlaboratory data�both at the national level and the international level.

The Ionizing Radiation Division of NIST has constructed several SRMs for radiation measure-
ments. These are included in the 4350 series and can be ordered through NIST. One widely used
SRM is the natural matrix ocean sediment (4357). The radionuclides in the NIST natural matrix
SRMs are not spiked into the matrix but are incorporated through natural processes to present the
analyst with the combination of species that may be faced on a routine basis. SRM 4357 has two
sediment sources: the Chesapeake Bay (benign) and the Irish Sea (�hot�).
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The NIST natural matrix SRM project has certified actinides, fission and activation radionuclides
in soils, freshwater lake and river sediments, human tissues, and ocean sediment, and is working
on additional unique matrices: ashed bone, ocean shellfish, and Rocky Flats Soil-II. 

A numerical performance indicator for the analysis of a CRM is essentially the same as that for a
laboratory control sample. An example is 

where x is the measured value, d is the certified value, and uc
2(x) and uc

2(d) are the squares of the
respective combined standard uncertainties. Warning limits for ZCRM are ±2 and control limits
are ±3.

Excursions: Excursions in the CRM results can be used to identify various out-of-control
situations. The advantage of the CRM is that the sample matrix is always the same, and the levels
of analytes are known to a high degree, so uncertainties in matrix effects and radionuclide
content should not be a factor in evaluating excursions. A rapid and one-time excursion in the
SRM usually indicates that a mistake was made in the procedure. A rapid change with continued
occurrences suggest that something occurred that is out of the ordinary, such as a new analyst
performing the procedure or the use of a new batch of calibration solutions or reagents. Slow
changes showing a trend usually indicate degradation or contamination of equipment or reagents.

If a CRM result shows elevated concentrations, analysts should check for contamination sources
or poor instrument or tracer calibration. If the results show decreased concentrations, the analyst
should check for poor techniques or expired or poorly prepared reagents and solutions.

CRM results may indicate a bias in the measurement process. Tracking the performance of
several consecutive CRM measurements will show if the method or the laboratory consistently
obtains high or low results. If the results are consistently higher or lower than the certified values,
they should be evaluated for a statistical difference, e.g., t-tested. When the test indicates a
statistical difference, a bias is indicated and the laboratory should investigate the cause of the bias
and correct or characterize it.

Example: The NIST ocean sediment SRM 4357 offers a good example of a material for
evaluating a laboratory performance using a specific analytical method. The blended sediment
sample has been analyzed by a number of laboratories, and 10 radionuclides have certified
activity values (Lin et al., 2001). The six �natural� radionuclides concentrations tended to have
normal distributions (Table 18.1a), while the four �man-made� radionuclides tended to have
Weibull distributions (Table 18.1b). There are also 11 other radionuclides where the activity
concentrations are not certified at this time but may be at some future time (Table 18.1c). 
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TABLE 18.1a � Certified Massic activities for natural radionuclides 
with a normal distribution of measurement results

Radionuclide Mean ± 2sm *

(mBq/g)

Tolerance Limit
(2.5 to 97.5%)

(mBq/g)

Number of
Assays

40K 225 ± 5 190 � 259 31
226Ra 12.7 ± 0.4 10.3 � 15.0 21
228Ra 13.3 ± 0.8 9.2 � 17.4 20
228Th 12.1 ± 0.3 9.7 � 14.6 40
230Th 12.0 ± 0.5 9.6 � 14.4 18
232Th 13.0 ± 0.3 11.6 � 14.3 18

Table 18.1b � Certified Massic activities for anthropogenic radionuclides 
with a Weibull distribution of measurement results

Radionuclide Mean ± 2sm *

(mBq/g)

Tolerance Limit
(2.5 to 97.5%)

(mBq/g)

Number of
Assays

90Sr 4.4 ± 0.3 2.1 � 8.4 49
137Cs 12.7 ± 0.2 10.8 � 15.9 76
238Pu 2.29 ± 0.05 1.96 � 2.98 65

239Pu + 240Pu 10.4 ± 0.2 9.3 � 13.2 84

Table 18.1c � Uncertified Massic activities. Radionuclides for which there are insufficient data 
or for which discrepant data sets were obtained. Uncertainties are not provided because 

no meaningful estimates could be made.

Radionuclide Mean
(mBq/g)

Range of Reported
Results (mBq/g)

Number of
Assays

129I 0.009 0.006 � 0.012 6
155Eu 1.4 1.2 � 1.5 2
210Po 14 12 � 15 5
210Pb 24 14 � 35 19
212Pb 14 13 � 14 5
214Bi 15 9 � 20 5
234U 12 9 � 15 68
235U 0.6 0.1 � 1.4 63

237Np 0.007 0.004 � 0.009 9
238U 12 7 � 16 76

241Am 10 7 � 18 97

SRM 4357. Data for these radionuclides are provided for information only. The Massic
activities are not certified at this time, but they may be certified in the future if additional data
become available. 
* Sm = standard uncertainty of the mean.
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18.4.5 Chemical/Tracer Yield

Issue: Some methods require that radionuclides should be separated chemically from their
sample matrix and purified before measurement. During chemical processing, some of the
analyte radionuclide will be lost due to sample spillage, evaporation, incomplete chemical
reactions (i.e., precipitation or extraction), etc., as discussed in Chapter 12. While these losses
may correlate with a group of samples of similar chemical composition or from the same
sampling area, they can be sample specific. For quantitative analysis, it is necessary to correct
observed instrument responses for these losses for each analytical sample. Corrections are made
using compounds that are stable (carriers) or radioactive (tracers). An inappropriate method for
determining chemical yield may result in an analytical bias. 

Discussion: Most alpha- and beta-emitting radionuclides require chemical separation prior to
measurement, in part because of the short effective range of the radiation.

CARRIERS. Since it is impossible to determine exactly how much of the analyte is lost during
processing, and because the physical mass of the radionuclide is too small to measure gravi-
metrically, a compound is added to the sample at the start of the chemical processing, and is
carried through the analytical process and assayed. The added compound typically is stable and
exhibits the same chemical properties as the analyte and therefore �carries� the analyte radionuc-
lide�for example, stable barium that carries radium isotopes, or stable yttrium that carries 90Y.
These added compounds are called �carriers� and are added in sufficient quantity to allow
gravimetric assay upon completion of the analysis. The ratio of the carrier recovered to the
amount added is the chemical recovery, or yield. Because the carrier and analyte exhibit similar
chemical behavior, the chemical yield of both should be equal, i.e., if 85 percent of the stable
barium is recovered, then it follows that the observed instrument response represents 85 percent
of the radium present in the sample.

TRACERS. For radionuclides above atomic number 83, stable isotopes do not exist, and a different
approach often is taken to determine the analyte�s yield. For these radionuclides, an isotope other
that those being measured is added to the sample in the same manner as described above, e.g.,
232U used as a tracer for isotopic uranium (234U, 235U, and 238U), 236Pu, or 242Pu used as a tracer for
isotopic plutonium (238Pu, 239Pu, and 240Pu). 

This approach to chemical yield determination is based on the following assumptions regarding
the carrier/tracer:

  � It exhibits similar chemical behavior as the analyte under the protocol�s conditions.

  � The energy emission of the tracer and progeny should not interfere with the resolution of the
analytes of interest.
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  � It is chemically and physically equilibrated with the sample before losses of either occur.

  � Indigenous concentrations of carrier or tracer are insignificant, or are well known and can be
quantified and corrected for during subsequent data analysis.

  � The chemical form of carrier or tracer precipitates are consistent with what was used during
the material�s preparation and standardization.

Care should be taken during the analytical procedure to ensure that these assumptions are valid.
Different conditions, such as a lack of equilibrium between the tracer and sample analyte, can
result in inaccurate data. If there is indigenous tracer or carrier in the sample, this quantity should
be known so that the appropriate correction can be made for its contribution to the chemical
yield. In some cases, this will prevent the procedure�s use, as described below. As stated
previously, the quantity of tracer or carrier added to the sample should overwhelm its indigenous
concentration, which cannot be determined for samples with unknown tracer or carrier content. A
separate analysis for trace elements or interfering radionuclides could provide information to
estimate the uncertainty contributed by the sample�s indigenous tracer or carrier.

It should be noted that some analytical methods exclude direct assessment of the procedure�s
chemical yield for each sample analysis. In such cases, chemical yield typically recovery is
addressed by analyzing a group of prepared standards by the same protocol and the results are
analyzed statistically to derive a chemical yield factor. The recovery factor is applied to routine
samples based on the assumption that the standards used for its derivation are representative of
routine samples. This approach precludes the empirical assessment of a sample specific chemical
yield, and would probably require scrutiny and periodic verification.

Acceptance limits for chemical/tracer yields should be specified in the laboratory�s quality
manual. While it is customary to establish lower limits for chemical yield, upper limits may also
be necessary since excessive yields indicate a loss of analytical control. All limits developed by
the laboratory should be either statistically based or based on historical data, and should include
warning and control limits. The inherent differences among sample matrices generally require the
use of matrix specific criteria, i.e., finished drinking water limits may differ from limits for high
solid content waters, sandy soils or heterogeneous media. Irrespective of medium, where
practical, the chemical yield and its uncertainty should be determined, recorded and tracked for
each radiochemical measurement.

Excursions: There are several possible reasons for the yield to be outside of the acceptance
limits. These are summarized in Figure 18.5 and discussed below.
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CHEMICAL YIELD

EXCESSIVE YIELDS LOW YIELDS HIGHLY VARIABLE YIELDS
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  S Indigenous carrier in
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  � CHANGED CALIBRATION
  S Source thickness
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  S Source-detector distance
  S Inaccurate standardiza-
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  �  PROCEDURE FAILURE
  S Reagent problem
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interference
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  S Incomplete separation
  S Source thickness
  S Source diameter
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�  NEW MATRIX/ INTERFERENCE
  S  Reagent concentration

�  NOT FOLLOWING PROCEDURE
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  S Temperature
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  S Time 
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FIGURE 18.5 � Failed performance indicator: chemical yield

EXCESSIVE YIELDS: A chemical yield significantly greater than 100 percent indicates a
problem. Typical causes of excessive chemical yields are provided below:

  � Interference. The sample may contain an interfering radionuclide that cannot be
distinguished from the tracer and therefore biases the tracer response; the sample may
contain an indigenous concentration of the tracer or carrier used; or large amounts of
another stable element are present.

  � Counting. Changes in instrument calibration factor or other factors that affect counting,
e.g., source thickness, diameter, source-detector distance or change in chemical form of
final sample precipitate.

  � Instrument failure.

LOW YIELDS: A very low yield usually indicates a procedural failure caused by incomplete or
unsuccessful chemical separation, matrix interference, missing reagents, or the exclusion of a
key element in the sample processing. A significantly lower yield will increase the overall
measurement uncertainty and degrade the procedure�s effective detection capability unless
the counting time is appropriately extended, which may be impractical or even ineffective in
many cases. Furthermore, measurement of the recovered carrier or tracer becomes increasing-
ly more adversely affected by background, stable element, water absorption, and other
corrections as the yield decreases. Fixed lower limits for yields often are established and
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should be specific to analytical procedures and sample matrices. Setting an upper limit is
recommended for the acceptable relative uncertainty in a yield measurement.

HIGHLY VARIABLE YIELDS: High variability in procedural temperature, concentration, time,
reagent concentration, or laboratory technique can have dramatic effects on yield. Highly
variable yields indicate a lack of procedural control and should be investigated and corrected.
A simple step such as heating samples on a hotplate can lead to variability in yield because
the hotplate surface is thermally uneven. Samples can be dried and reconstituted several
times during the course of the preparation protocol, and samples may require different
amounts of heat or water, which introduces additional variability. When highly variable
chemical yields are observed, a careful examination of the analytical procedure�s application
is recommended to determine critical variables and the controls needed to re-establish
adequate management over yields.

18.5 Instrumentation Performance Indicators

Radiometric and non-radiometric instruments are used currently to quantify radionuclides in a
variety of environmental matrices, and quality control measures are necessary to ensure proper
instrument performance. This section presents radiometric instrument performance measures that
indicate a measurement system is in control. For detailed information on instrument concepts and
specific techniques, see Chapter 15 as well as ASTM standard practices (e.g., D3648, for the
Measurement of Radioactivity). The specific quality control procedures to be followed depend on
the measurement equipment. Sufficient checks are needed to demonstrate that the measurement
equipment is properly calibrated, the appropriate background has been recorded, and that all
system components are functioning properly. QC measures for instrumentation should include at
a minimum: (1) instrument background measurements, (2) instrument calibration with reference
standards, and (3) periodic instrument performance checks subsequent to the calibration.
Acceptable control limits should be specified in appropriate laboratory documents. 

18.5.1 Instrument Background Measurements

Issue: In general, radionuclide detection covers more than 17 orders of magnitude of sample
activity, from irradiated material that produces high radiation fields to environmental samples.
All radiation detection instruments have a background response even in the absence of a sample
or radionuclide source. To determine the instrument�s response to the radioactivity contributed
by the sample alone (net), the instrument background response is subtracted from the sample-
plus-background response (gross). Background corrections become more critical when the
instrument net response is small relative to the background. Careful control of contamination and
routine monitoring of instrument background are therefore integral parts of a control program.
Inappropriate background correction results in analytical error and will increase the uncertainty
of data interpretation.
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Discussion: Every radionuclide detector produces a signal response in the absence of a sample or
radionuclide source. These signals are produced by electronic dark current, cosmic radiation,
impurities in the instrument construction materials, crosstalk between the detector�s alpha and
beta channels, sources in the general vicinity of the detector, and residual contamination from
previous counting episodes. The majority of these contributors (i.e., dark current, cosmic
radiation, construction material impurities) to instrument background produce a fairly constant
count rate, given sufficient measurement time. For other sources, instrument backgrounds vary as
a function of time (i.e., from decay or ingrowth of residual contamination or as radon levels
fluctuate throughout the day and season). For low-level measurements, it is imperative that the
background be maintained as low as feasible. Active or passive detector shielding, removing or
adequately shielding radioactive sources in the vicinity of the detector, and good laboratory
practices to prevent residual contamination are necessary to maintain low instrument background.

The instrument�s background should be determined in the absence of a radionuclide source. The
instrument background should be well characterized. The instrument background is an important
factor in determining the ability to achieve a specific minimum detectable concentration (MDC).
Control limits for the background should be specified in appropriate laboratory documents. The
background population considered in the statistical calculations should cover a sufficient period
of time to detect gradual shifts in the measurement system�s background contamination or detec-
tor instability. Additionally, backgrounds should be determined in such a way that they mimic
actual sample measurement conditions as closely as possible, i.e., using appropriate sample
containers, geometries, and counting times.

Background measurements should be made on a regular basis and monitored using control
charts. For instruments with well established background performance records and a low
probability of detector contamination, this frequency may be modified by the laboratory. For
mass spectrometry and kinetic phosphorimetry analysis, background measurements should be
performed on a real time basis. See ASTM E181, ANSI N42.12, and NELAC (2002) Quality
Systems Appendix D for more information on the suggested frequency of background
measurement.

Excursions: Variations in instrument backgrounds may indicate instrument malfunction. Variations
may take the form of rapid increase or decrease in background, slow increase or decrease in back-
grounds, and highly variable or erratic backgrounds. These variations can result in the measurement
system�s reduced precision and decreased detection capability. Rapid or significant increases in
background measurements may be due to instrument or blank contamination, insufficient shielding with
relocation of nearby radionuclide sources, or large scale equipment malfunction (e.g., a broken window
on a gas proportional system).

Instrument background data should be evaluated for trends, which is facilitated by regular inspec-
tion of control charts. A slowly changing background could alert laboratory personnel to a
potentially serious instrument failure. A sufficient number of data points (Chapter 15) taken over
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time should be included in any trend analysis. Slowly changing instrument backgrounds could be
caused by low counting-gas flow rates, small incremental instrument contamination, or electronic
drift or noise.

When the instrument background is more variable than expected, the reliability of measurements
becomes questionable, resulting in loss of confidence and increased uncertainty. This indicates a
loss of control over the measurement environment, or limitations of the data handling software.
The root cause of the variability should be identified and corrected to re-establish statistical
control over the instrument background. Table 18.2 presents reasons for changing backgrounds.

TABLE 18.2 � Instrument background evaluation
Instrument Background Failed Performance Indicator

Rapid Change in Background Slow Change in Background Excessively Variable Background
Electronic failure
Detector failure
Loss of coolant/vacuum
Instrument contamination
Counting gas changes
Temperature/humidity fluctuation
Laboratory contamination 
External sources
Insufficient shielding
Personnel with nuclear medicine dose

Instrument contamination
Electronic drift
Low counting gas flow rate

Sources being moved
Radon fluctuation
Insufficient shielding
Insufficient counting statistics
Interfering radionuclides
Poor peak deconvolution
Intermittent electrical grounding

problems
Failing electronics

18.5.2 Efficiency Calibrations

Issue: This section discusses selected aspects of instrument calibration that are pertinent to
laboratory quality control. A more in-depth, technical discussion is provided in Chapter 16. The
number of events (counts) recorded by a detector is converted to activity (actual radionuclide
transformations) by empirically determining this relationship with NIST-traceable radionuclide
sources when available. This relationship is expressed in the system�s efficiency calibration. A
separate efficiency is determined for each detector-source combination and is typically energy or
radionuclide specific. 

Detector efficiency is critical for converting the detector�s response to activity. As discussed
above, routine performance checks can evaluate several aspects simultaneously (sample geomet-
ry, matrix, etc.) and provide a means to demonstrate that the system�s operational parameters are
within acceptable limits. These are typically included in the assessment of the analytical
method�s bias and are specified in terms of percent recovery based on the source�s known
disintegration rate. Performance checks for measurement efficiency are usually determined
statistically from repeated measurements with a specific check source. Detection of a shift in
measurement efficiency should be investigated.
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The frequency of performance checks for efficiency calibrations is instrument specific. The
frequency of these checks is often based on a standardized time scale or a percentage of the total
number of analyses performed using that method.

Performance checks for instrument efficiency typically are performed on a day-of-use basis. The
level of activity in the check source should be sufficient to allow the accumulation of enough
counts in a short time so that daily performance checks do not impose an unnecessary burden on
the laboratory. However, the source strength for spectrometry systems should be such that
instrument dead time is not significant and gain shifts do not occur (ANSI 42.23). For detectors
that are used infrequently, it may be necessary to perform a check before and after each set of
measurements.

Control charts provide a useful tool for documenting and evaluating performance checks for
efficiency calibrations, and should be established and maintained for the intrinsic efficiency of
each detector. There are several methods available for evaluating performance using control
charts (see Attachment 18A).

Discussion: Most radiation detectors do not record all of the nuclear transformations that occur
in samples undergoing measurement, i.e., they are not one hundred percent efficient. This occurs
for several reasons, and the prominent reasons are discussed briefly below.

  � Intrinsic or absolute efficiency2 � In the absence of all other factors, a detector will only
record a fraction of the emissions to which it is exposed due to its composition and other
material-related aspects. Intrinsic efficiency is a measure of the probability that a count will
be recorded when a particle or photon of ionizing radiation is incident on a detector (ANSI
N1.1).

  � Geometry � The spatial arrangement of source, shielding, and detection equipment, including
the solid angle subtended by the detector and sample configuration, largely determines what
fraction of the emissions from the source actually reach the detector (ANSI N15.37).
Geometry includes the source�s distance from the detector and its spatial distribution within
the counting container relative to the detector and shielding components.

  � Absorption � Radiation emitted by the source can be absorbed by the source itself (self-
absorption), as well as other materials placed between the source and the detector, i.e., source
container, detector housing, and shielding (NCRP 58).
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  � Backscatter � Radiation emitted by the source can hit the source container or detector
shielding and scatter into the detector.

The detector response is a composite of these factors.

Each radiation detector should be calibrated to determine the relationship between the observed
count rate of the detector and the emission rate of the source being assayed. This relationship is
called the efficiency calibration�typically expressed in counts per second/emissions per second,
or cps/dps�and is an integral part of the measurement protocol. For alpha spectrometry systems,
the efficiency of detection is energy-independent. Efficiencies for gamma spectrometry are
energy dependent, and an efficiency calibration typically covers a range for a specific counting
geometry, e.g., 50 to 1,800 keV. 

Once this relationship is established, it should be checked at regular intervals using what is called
a performance or calibration check. The performance check does not seek to reestablish the
detector�s efficiency but simply demonstrates that the relationship is within acceptance limits.
When designed properly, an efficiency performance check evaluates the intrinsic efficiency,
geometry and absorption in a single measurement. Accordingly, it takes the form of a single
value that incorporates all effects for a target radionuclide and a specific detector-sample
configuration. Detectors that are energy dependent and measure radionuclides with multiple
energies, such as photon or alpha spectrometers, should have performance checks at several
energies throughout the measurement range. For these detectors, the performance check can
simultaneously address the system�s efficiency, energy calibration and resolution using a single
source. An internal pulser can be used to check the electronics.

Because the performance check�s purpose is to demonstrate that the system�s efficiency remains
constant, the source�s absolute disintegration rate need not be known, provided its purity can be
established, its half-life is known, and its activity is sufficient to provide adequate precision.
Accordingly, it is not necessary to use a NIST-traceable check source for this purpose. Check
sources that are non-NIST-traceable can meet the precision objectives of the performance check
and they are less expensive. 

Excursions: Changes in the efficiency of a detector can only be corrected by determining the
root cause of the problem and repeating the efficiency calibration. Gradual changes in geometry
usually indicate a problem with the technique of sample mounting or preparation. A visual
inspection of the prepared source is often helpful in eliminating sample geometry as a cause of
the problem. For example, a precipitated sample counted on a gas proportional counter has an
expected appearance, i.e., a circle of precipitate centered on the planchet and often covered with
thin plastic film. If the prepared source does not have the correct appearance, there could be a
problem with the geometry, self-absorption, and backscatter. This can sometimes be corrected by
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preparing the source a second time, inspecting it and presenting it for counting a second time.
Re-training personnel responsible for the error may also be indicated. Because sources that have
been improperly prepared for counting can result in contamination of or physical damage to the
detector, it is strongly recommended that every source be visually inspected prior to counting.
Significant changes in geometry caused by modifications to the source preparation method can
only be corrected by recalibrating the detector. Examples of modifications to source preparation
methods are (1) using a new filter so that the geometry of the test source is different than the
geometry used for calibration, and (2) replacing the containers used for gamma spectrometry with
containers that have a different wall thickness or are made from different materials.

Changes in intrinsic efficiency generally result from a physical change to the detector and often
result in rapid changes in efficiency. In many cases, changes that affect the intrinsic efficiency of
a detector render it inoperable. These are specific to a detector type and are listed below:

  � HPGe, Ge(Li), and surface barrier detectors � Real or apparent changes in intrinsic efficiency
may be caused by vacuum leaks or failure of field effect transistor. 

  � Thin window detectors (gas proportional counters, low-energy photon) � Changes in
measurement efficiency are typically associated with damage to the detector window.

  � Gas proportional systems � Problems may be related to the quality or flow of counting gas. 

  � Anti-coincidence systems with guard detectors � Electrical problems with the anti-
coincidence circuits may produce apparent changes in efficiency. 

  � Scintillation detectors � Gradual changes in efficiency are associated with the scintillator or
the photomultiplier tube. For example, NaI(Tl) crystals may gradually turn yellow over time
resulting in a lower intrinsic efficiency, and liquid scintillation counters may have residue
gradually build up on the surface of the photomultiplier tube affecting the detection of
photons by the tube.

18.5.3 Spectrometry Systems

18.5.3.1 Energy Calibrations

Issue: This section discusses selected aspects of instrument calibration that are pertinent to
laboratory quality control. A more in depth, technical discussion of instrument calibration is
provided in Chapter 15 (Quantification of Radionuclides). All radiation measurements are energy
dependent to a certain extent. However, spectrometric techniques such as gamma and alpha
spectrometry identify radionuclides based on the energy of the detected radiations. For these
techniques a correct energy calibration is critical to accurately identify radionuclides. Problems
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with energy calibration may result in misidentification of peaks.

Discussion: Spectrometry systems should be calibrated so that each channel number is correlated
with a specific energy. To identify radionuclides correctly, this energy calibration needs to be
established initially and verified at regular intervals. The energy calibration is established by
determining the channel number of the centroid of several peaks of known energy over the
applicable energy range. Typically, a minimum of three peaks is used, and commercially
available sources contain nine or ten photopeaks. The relationship between energy and channel
number can be determined by a least squares fit. To account for non-linearity, a second or third
order fit may be used. However, these require more points to define the curve. For example, a
first order calibration requires at least two points, while a second order calibration requires a
minimum of three points. The end points of the curve define a range of applicability over which
the calibration is valid, and peaks identified outside the curve�s range should be used carefully.
The uncertainty associated with the curve should be available at any point along the calibration
curve.

Quality control checks for energy calibration may be combined with checks for efficiency cali-
bration and resolution. Radiations emitted over the range of energy of interest are measured, and
two or more peaks are used to demonstrate that the energy calibration falls within acceptable
limits. Check sources may consist of a single radionuclide or a mixture of radionuclides (e.g.,
mixed gamma). Because only the location of the peak is of concern, there is no requirement that
the check source be calibrated or certified, except for ensuring that it does contain the
radionuclide(s) of interest at a specified level of purity.

The energy calibration is determined when the system is initially set up by adjusting the gain of
the amplifier, analog-to-digital conversion (ADC) gain, and zero. Criteria that indicate when
readjustment is required because of gradual and abrupt changes in the energy versus channel
calibration should be established as an integral part of the system�s operating procedure. These
changes usually are monitored by the measurement system�s software, and the user specifies the
allowable difference between that the system�s response and the radionuclide�s known energy.
The tolerable difference often relates to the instrument�s resolution. For example, a high resolu-
tion instrument such as an intrinsic germanium detector typically will have acceptable limits on
the order of a few keV, while a low resolution instrument such as a NaI(Tl) detector typically
will have acceptable limits on the order of several tens of keV.

Spectra also can be analyzed by identifying each peak manually. With manual identification, the
acceptable limits for the energy calibration are determined for each spectrum based on the pro-
fessional judgment of the person analyzing the spectrum.

The frequency of QC checks for energy calibrations can be related to the expected resolution of
the instrument, the electronic stability of the equipment, or the frequency needs of QC
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measurements for efficiency calibration or resolution. These are specified typically in the
laboratory�s quality manual or other typical project-related documentation. Examples for three
detector types are provided below and in Tables 18.5 through 18.8.

  � HPGe and Ge(Li) Photon Detectors. Energy calibrations are typically verified using a check
source on a day of use basis. Every source spectrum should include verification of the energy
calibration as part of the data review process, when possible. Under extreme conditions (e.g.,
in situ measurements in bad weather), it may be necessary to perform checks at the beginning
and end of each measurement period or day the instrument is used.

  � Surface Barrier Alpha Spectrometry Detectors. The energy calibration is often performed
using an alpha source when the instrument is setup initially and when a detector has been
serviced or replaced. Electronic pulsers can be used for daily checks on energy calibration.
Most alpha spectra include a chemical yield tracer with a peak of known energy that can be
used to verify the energy calibration during data review. Alpha spectrometers have a lower
resolution than germanium detectors, and newer spectrometers are sufficiently stable to allow
weekly or monthly performance checks. The frequency of performance checks should be
based on the number and frequency of measurements and historical information on the
stability of the instrument.

  � Low-Resolution NaI(Tl) Detectors. These typically are less stable than HPGe detectors and
may require more frequent quality control checks, depending on the conditions under which
they are used. 

For all detectors where energy calibrations are performed daily, plotting the channel numbers of
peak centroids can be useful for identifying trends and determining the need for adjusting the
system. Changes in peak location may result in mis-identification of radionuclides. When this is
observed, all spectra obtained since the last acceptable energy calibration check should be
reviewed. If there is sufficient information within the spectrum to determine the acceptability of
the energy calibration, no further action may be required for that spectrum. If the spectrum con-
tains too few peaks of known energy, reanalysis should be initiated.

Gradual changes in peak location are not unexpected and the rate of these gradual changes can be
used to establish the appropriate frequency of energy calibration checks. The acceptable limits on
peak location established during the initial system setup may be used to indicate when the energy
calibration needs to be readjusted.

Excursions: Changes in the energy calibration can be the result of many factors including power
surges, power spikes, changes in the quality of the electrical supply, variations in ambient condi-
tions (e.g., temperature, humidity), physical shock to the detector or associated electronics, and
electronic malfunction.
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Rapid changes in energy calibration are usually caused by power surges, power spikes, or physi-
cal shocks to the system. Corrective actions typically involve recalibrating the system and repeat-
ing the analysis. If changes result due to loss of cryostat vacuum, the instrument may need to be
returned to the manufacturer to be refurbished or replaced.

Gradual changes in the energy calibration are usually the result of a variable or poorly condi-
tioned power source, changes in the ambient conditions, or electronic malfunction. Corrective
actions generally begin with identifying the root cause of the problem. Gradual changes that
begin following relocation of the instrument are more likely to be caused by the power source or
the ambient conditions. Installing a line conditioner, surge protector, and uninterrupted power
supply is recommended to address problems related to the system�s electrical power source.
Problems with low humidity can be corrected through the use of a humidifier in dry climates or
cold weather; conversely, high or variable humidity may require the use of a dehumidifier. Prob-
lems associated with fluctuations in temperature may require significant changes to the heating
and cooling system for the room or building containing the instrument in order to stabilize the
temperature. Gradual changes that occur following physical shocks to the system or following a
rapid change in peak location with an unidentified cause are more likely to be the result of prob-
lems with the electronic equipment. In most cases the amplifier is the source of these problems,
but the analog-to-digital converter, pre-amplifier, power supply voltages, and multi-channel (or
single-channel) analyzer may also cause this type of problem. However, they could also be the
result of crystal or detector failure. Systematic switching out of components and discussions with
the instrument manufacturer will often help to identify which component may be the source of
the trouble. It may be especially difficult to identify the source of problems with new instruments
in a new facility.

18.5.3.2 Peak Resolution and Tailing

Issue: The shape of the full energy peak is important for identifying radionuclides and quantify-
ing their activity with spectrometry systems. Poor peak resolution and peak tailing may result in
larger measurement uncertainty. If consistent problems with peak resolution are persistent , then
an analytical bias most likely exists. Many factors will affect peak resolution and these are
discussed below.

Discussion: Detectors with good resolution permit the identification of peaks which are close in
energy. When a monoenergetic source of radiation is measured with a semiconductor, scintilla-
tion, or proportional spectrometer, the observed pulse heights have a Gaussian distribution
around the most probable value (Friedlander et al., 1981). The energy resolution is usually
expressed in terms of the full width at half maximum (FWHM) or the full width at tenth
maximum (FWTM). 

In a semiconductor detector, fluctuations in output pulse height result from the sharing of energy
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between ionization processes and lattice excitation (Friedlander et al., 1981). The number of
charge pairs created by radiation of a given energy will fluctuate statistically. This fluctuation
occurs because the energy causes lattice vibrations in the semiconductor as well as the formation
of charge pairs. This sharing of energy causes a variation in the number of charge pairs created
and gives rise to the width of a measured peak. The magnitude of the statistical fluctuation is pro-
portional to the energy of the radiation. There is also a variation in the number of charge pairs
collected by a detector.

In a scintillation detector, the statistical fluctuations in output pulse heights arise from several
sources. The conversion of energy of ionizing radiation into photons in the scintillator, the elec-
tronic emission at the photocathode, and the electron multiplication at each dynode are all subject
to statistical variations. Note that the distance of the source to the detector also impacts the
resolution.

In a proportional counter, the spread in pulse heights for monoenergetic rays absorbed in the
counter volume arises from statistical fluctuations in the number of ion pairs formed and the gas
amplification factor (Friedlander et al., 1981). If the gas gain is made sufficiently large, the
fluctuations in the number of ion pairs determine the resolution. 

The FWHM typically is used as a measure of resolution, while the FWTM is used as a measure
of tailing for the full energy peak. For Gaussian peaks with standard deviation σ, the FWHM is
equal to 2.35σ. The resolution of a detector is the ratio of the FWHM (in keV) to the energy (in
keV) at the most probable peak height. The sources of fluctuations that contribute to the standard
deviation are dependent on the type of detector (see Chapter 15,  Quantification of Radionuc-
lides, for a more detailed discussion of detector resolution). 

Resolution affects the ability to identify individual peaks in two ways (Gilmore and Heming-
way,1995). First, it determines how close together two peaks may occur in energy and still be
resolved into the two components. Second, for gamma spectrometry, when a peak of small mag-
nitude sits on the Compton continuum of other peaks, its ability to be detected can depend on its
signal-to-noise ratio. With good resolution, the available counts are distributed in fewer channels,
thus those counts will be more easily identified as a peak by the spectrometry analysis software.
If resolution degrades significantly the efficiency may be in error. This is especially true when the
spectrum analysis involves the region of interest (ROI) concept. When the calibration is per-
formed, the full energy peak may fit within the defined ROI limits, whereas the resolution
degraded peak may have counts which fall outside them. Thus, the detector efficiency will be
effectively decreased and inconsistent with the previously determined efficiency. 

Tailing is another observable feature of the peak shape. Tailing is an increased number of counts
in the channels on either side of the full energy peak. Tailing affects the FWTM more than the
FWHM, so the ratio of FWTM to FWHM can be used as a measure of tailing. For a Gaussian
distribution the ratio of FWTM to FWHM is 1.823. For most germanium detectors this ratio
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should not exceed 2.0. Tailing may be caused by imperfect or incomplete charge collection in
some regions of the detector, escape of secondary electrons from the active region of the detector,
electronic noise in the amplification and processing circuitry, loss of vacuum and escape of
bremsstrahlung from the active region of the detector. Tailing may also result from the source�s
self-absorption for alpha emitting radionuclides.

The resolution (FWHM) is routinely calculated for gamma and alpha spectrometry peaks by the
spectrum analysis software and can be monitored by observing the FWHM calculated for the
check sources routinely counted. Resolution monitoring and charting is normally an integral part
of a measurement quality system. Acceptance parameters may be established for resolution and
incorporated in the analysis software. For alpha spectrometry, where radionuclide tracers are used
for chemical yield determination, the FWHM can be monitored for each analysis, if desired.
Some projects may specify FWHM limits for internal tracer peaks on each sample run. 

The shape of the peak is important for quantifying the activity, and resolution is important for
identifying peaks in a spectrum. The shape of the peak is also important for monitoring the per-
formance of a detector. Germanium detectors have very good resolution on the order of 1 per-
cent. The FWHM at specific energies is provided by the manufacturer. The FWHM should be
established at several energies throughout the range being measured because the FWHM is
directly proportional to the energy. These energies are usually the same as those used for check-
ing the energy calibration and the efficiency calibration. Tolerance or ontrol limits for FWHM
and the ratio of FWTM to FWHM may be developed based on statistics using multiple
measurements collected over time.

The resolution of an alpha spectrum is dominated typically by self-absorption in the source. This
is indicated by low energy tailing and elevated FWTM and FWHM. Most surface barrier detec-
tors are capable of resolutions on the order of 30-40 keV for monoenergetic nuclides and 80-100
keV for unresolved multiplets. Acceptance of sample resolution is usually monitored by visual
inspection of individual spectra. For well-prepared samples, the FWHM of the alpha peaks may
be expected to be from 30 to 80 keV.

The resolution of scintillation detectors is not as good as the resolution of semiconductor detec-
tors, but peak shape and tailing are just as important for analyzing samples. The FWHM should
be established at several energies throughout the range being measured. These energies are
usually the same as those used for checking the energy calibration and the efficiency calibration.
Control limits for FWHM and the ratio of FWTM to FWHM may be developed based on
statistics using multiple measurements collected over time.

Performance checks for resolution and tailing should be performed for all instruments used as
spectrometers. These measurements are usually combined with the performance checks for
energy calibration and efficiency calibration. Quality control activities should include visual
inspection of all spectra to evaluate peak shape and tailing.
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Tolerance limits or control charts for FWHM and the ratio of FWTM to FWHM can be
developed and used to monitor the performance of any detector used as a spectrometer. Because
the concern is when the resolution degrades (i.e., the FWHM increases) or tailing becomes a
problem (i.e., the ratio of FWTM to FWHM increases), control limits are necessary. Limits can
be developed based on historical performance for a specific type of detector. Control charts offer
a convenient method for monitoring the results of the performance checks. As mentioned
previously, the concern is associated with an increase in the FWHM or the ratio of FWTM to
FWHM. This means that only an upper control limit or tolerance limit is required for the chart.

Excursions: Changes to the FWHM are associated with malfunctioning or misadjusted elec-
tronics, excessive electronic noise or interference, or detector or source problems. Electronics
problems include changes in the high voltage applied to the detector, noise (including cable noise
and high voltage breakdown), and electronic drift. Electronics problems may be caused by
changes in the high voltage, improper adjustment of the pole zero or baseline restorer, or drift of
the amplifier gain or zero during acquisition. Source problems are usually only associated with
alpha spectra and result in excessive self-absorption resulting in low-energy tailing. This can
result in counts being identified with an incorrect peak. Problems that are not electronic or source
related imply that the detector is malfunctioning.

Changes to the ratio of FWTM to FWHM indicate problems associated with tailing. Tailing can
occur on the high- or low-energy side of the peak. High-energy tailing indicates electronics prob-
lems that may be caused by excessive activity in the sample, incorrect adjustment of the pole zero
or pile-up rejector, or drift of the amplifier gain or zero while acquiring the spectrum. Low-
energy tailing indicates an electronic or a source problem�a possible corrective action is to
check to see if the vacuum is set properly for alpha detectors. Table 18.3 lists common problems,
the implied root cause of the problem, and possible corrective actions.

TABLE 18.3 � Root-cause analysis of performance check results for spectrometry systems
Observed Problem Implied Root Cause Possible Corrective Actions

Efficiency changed Unknown
Electronics degradation
Geometry changed
Poor source
Software application

Ensure the correct check source was used
Check to ensure the efficiency was evaluated using the correct

geometry
Ensure high voltage is set properly
Pulser check of electronics

Peak centroid moved Gain changed Check amplifier gain
Check conversion gain
Check stability of amplifier for gain shifts or drifting

Offset shifted Check zero offset
Check digital offset
Check stability of amplifier for gain shifts or drifting

FWHM changed Electronics problem Ensure high voltage is set properly
Source problem Increased source-to-detector distance (for alpha spectrometry)
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FWTM changed Electronics problem Ensure high voltage is set properly
Source problem Repeat test-source/sample preparation and recount

Reanalyze sample
Check with weightless (plated) source
Increased source-to-detector distance (for alpha spectrometry)

No peak or broad
peaks

Electronics problem Ensure that high voltage is correct

Low-energy tailing Electronics problem Ensure that high voltage is correct
Check pole zero adjustment
Check baseline restorer
Check stability of amplifier for gain shifts or drifting
Check for loss of vacuum

Source problem Repeat test-source/sample preparation and recount
Reanalyze the sample

High-energy tailing Electronics problem Check pole zero adjustment
Check pile-up rejector
Check stability of amplifier for gain shifts or drifting

Source problem 
(too much activity)

Reduce volume of sample analyzed
Increase distance between the source and detector

Spectra shifted
uniformly

Offset shifted Check zero offset
Check digital offset
Check amplifier for zero drift

Spectra stretched or
compressed

Gain changed Check amplifier gain
Check conversion gain
Check amplifier for gain shifts

18.5.4 Gas Proportional Systems

18.5.4.1 Voltage Plateaus

Issue: The accuracy of the results produced by a gas proportional system can be affected if the
system is not operated with its detector high voltage properly adjusted, such that it is on a stable
portion of the operating plateau.

Discussion: The operating portion of a detector plateau is determined by counting an appropriate
source at increasing increments (e.g., 50 volts) of detector high voltage. For detectors which will
be used to conduct analyses for both alpha- and beta-emitting radionuclides, this should be done
with both an alpha and beta source. The sources used should be similar in both geometry and
energy to that of the test sources to be counted in the detector.

A plot of the source count rate (ordinate) versus high voltage (abscissa) rises from the baseline to
a relatively flat plateau region, and then rises rapidly into the discharge region for both the alpha
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and beta determinations. From the plateau, the operating voltage is selected so that small voltage
changes will only result in minor fluctuations to detector efficiency. Operation of the counter at
the upper end of the plateau is not recommended and can result in the generation of spurious
discharge counts. Modern high-voltage supplies, operating properly, experience little actual
voltage fluctuation. The detector response should be checked after repairs and after a change of
gas. The detector plateau should again be determined and plotted (voltage vs. count rate) after
repairs, particularly to the detector unit.

The historical tracking of the establishment and maintenance of this operating parameter is
recommended; it aids in determining the probable cause of quality control failure and the identi-
fication of long-term instrument deterioration. Items to be recorded include date/time, instrument
detector designation, source number, check source response at the operating point, and pertinent
instrument parameters, such as lower level discriminator setting, alpha-discriminator setting,
length of the plateau, operating high voltage setting, etc.

Excursions: Voltage changes of short- or long-term duration will affect reliability of a propor-
tional counter. If the detector voltage is lowered sufficiently, there is a danger of operating below
the plateau knee which, in effect, reduces the efficiency and would bias the results of any sample
count low. Should the voltage applied to the proportional detector be driven up to a point where
the slope of the plateau is sufficiently great enough to increase the efficiency of the detector,
sample counts may be biased high. A transient voltage increase of great enough magnitude could
introduce spurious counts. 

Shifts in the operating voltage along the plateau or length of the plateau could also result from
long-term detector deterioration or electronic drift or failure.

18.5.4.2 Self-Absorption, Backscatter, and Crosstalk 

Issue: The accuracy of alpha and beta activity determinations in samples with discernable solids
in a gas proportional system depends in large part on the determination and maintenance of self-
absorption and crosstalk curves.

Discussion: Samples counted for alpha and beta activity in a gas proportional system are typi-
cally prepared as inorganic salts, e.g., nitrates, carbonates, oxides, sulfates, or oxalates, and
contain on the order of tens to hundreds of milligrams of solids when counted, which result in
absorption and scattering of the particles in the sample material and mounting planchet (Chapter
16). Thus, for gas proportional systems, the detection efficiency for a given test source depends
on the self-absorption occurring within each sample volume/mass. To establish the correction
factor, a calibration curve is generated using a series of calibration sources consisting of an
increasing amount of solids and known amounts of radionuclide. The relative efficiency for each
calibration source is plotted against the amount of solids, and these data are used to determine a
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test source�s efficiency as a function of test-source mass. The diameter and the composition of
the test-source planchet, not just the test-source mass, should be identical with what was used for
routine samples. This allows calculation of the corrected amount of activity regardless of the test-
source mass (mass/efficiency curves).

The counting of alpha and beta particles simultaneously in a proportional counter requires that an
electronic discriminator be adjusted, such that pulses of heights below that represented by the
discriminator are registered as betas, and those of greater heights are counted as alphas. Crosstalk
occurs when alpha particles are counted in the beta channel or betas are registered as alphas. 
For example, the alpha-to-beta crosstalk for 241Am, which also has a 59.5 keV gamma-ray
emission (35.9 percent), would be greater than the alpha-to-beta crosstalk factor for a pure alpha
emitter (such as 210Po). However, this relationship is energy dependent, and care should be taken
to identify samples that differ significantly from the sources used to establish the crosstalk ratio.
For example, 90Sr + 90Y (Eβmax 2.28 MeV) is typically used as a beta source for instrument
calibration. However, samples containing natural uranium in equilibrium with its progeny
produce beta emissions that are considerably more energetic from the 3.28 MeV Eβmax betas of
214Bi. The crosstalk ratio established with 90Sr will be inadequate for such samples.

As the amount of solids in the test source increases, the beta crosstalk can increase due to the
degradation of the alpha particle energy by interaction with test-source material. Similarly, the
beta into alpha crosstalk decreases. Thus, crosstalk should be evaluated as a function of sample
weight to correct the observed relative alpha and beta counts. This is normally determined in
conjunction with the self-absorption curve. To check these parameters, calibration sources should
be prepared at the low and high ends of the calibration curve, and the limit of their acceptability
should be better than 1 percent (one sigma). These checks should be performed annually, at a
minimum, and following detector replacement or significant repair. The historical tracking of the
establishment and maintenance of these operating parameters is recommended. This aids in
determining the probable cause of quality control failure and the identification of long-term
instrument deterioration. In addition, items to be recorded include date/time, instrument detector
designation, source number, operating point, and pertinent instrument parameters, such as lower
level discriminator setting, alpha discriminator setting, etc. 

Excursions: Any change in the detector-source geometry or adsorption characteristics between
the source and detector, can affect the self-absorption and crosstalk correction factors. For
example, the replacement of a detector window with one whose density thickness is different
from the original window can necessitate the reestablishment of these parameters. Electronic drift
of the alpha discriminator can also affect the crosstalk ratios.

18.5.5 Liquid Scintillation 

Issue: The accuracy and reproducibility of radionuclide measurements by liquid scintillation are
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dependent on accounting for the quench (Section 15.5.3.3) of the measured test source. Quench
is one of the most significant factors to be accounted for, and can be affected by solvent-to-fluor
ratio, cocktail characteristics, suspension composition, acid concentration, and chemical and
radiological impurities. Care must be taken to assure radionuclide purity and chemical-
composition equivalence to calibration and test sources. An additional factor to consider is the
ratio of sample volume to scintillation-cocktail volume (i.e., dilution factor). Although this can
affect quench as well (especially if there is significant sample dilution), it is more critical that the
ratios used for calibration match those in the test-source analysis.

Discussion: The process of scintillation involves the energy transfer from the emitted beta
particles, slowing and stopping in the liquid medium as a result of collisions with molecularly
bound electrons. The transfer of energy from the beta particle to the electrons results in solvent
excitation through thermal, collisional, and photonic interactions. These excited solvent
molecules transfer energy through various processes to specific organic molecules known as
�fluors.� The combination of the solvent and fluor is referred to as the �cocktail.� The test source
is the combination of the cocktail and sample.

Fluors absorb the energy and are brought to an excited state. The de-excitation of these molecules
results in a photon emission that is detected by a photomultiplier tube. Many cocktail combina-
tions contain a second fluor (referred to as a wavelength shifter) which adjusts the emitted
photons to a specific bandwidth.

Any component of the cocktail that affects the energy transfer process will have a significant
effect on the analysis. This effect is referred to as �quench.� The quench of a cocktail can be
affected by:

  � Color;
  � Turbidity;
  � Molecules of high electron affinity;
  � Solvent;
  � Acidity; and
  � Dissolved gases.

Quench has the effect of shifting the energy distribution of the beta particle spectrum to lower
energies. Quench also can have the effect of reducing the number of net counts. 

Excursions: Slowly changing liquid scintillation measurements of a sample may be due to the
change in quench because of chemical attack on the cocktail system or to changes in instrument
or ambient temperature during a long count. Rapid changes in liquid scintillation measurements
include phase separation of the sample in the cocktail, sample precipitation, and light leaks into
the instrument. Some causes of excursions in liquid scintillation analysis are listed in Table 18.4.
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Examples: Specific examples of these types of excursions as it affects analysis can be seen in the
examples below.

TABLE 18.4 � Some causes of excursions in liquid scintillation analysis
Physical Effects Chemical Effects
Turbidity Elevated concentrations of Cl- or NO3

-

Sample opacity or color Solvents: CHCl3, methyl ethyl ketone, CCl4, etc.
Precipitation Peroxide
Fingerprints on vial Incorrect fluor
Phase separation Expired fluor
Light leaks into instrument Contaminated fluor
Inadequate dark adaptation
Temperature changes
Different vial composition

MEASUREMENT OF 55FE IN RADIOACTIVE WASTE SOLUTIONS. The separation techniques for iron
generally use nitric and hydrochloric acids. Both of these acids are eliminated prior to the
preparation of the cocktail by boiling down the solution with phosphoric acid. Nitric acid can
decompose in room light giving rise to the gas N2O4, which can impart a brown color to the
solution. High concentrations of chloride can act as electron scavengers in the solution. Both
these conditions yield quench. Removing them with phosphoric acid maintains the solution
acidity (so the iron does not precipitate) and does not act as a quench agent.

SAMPLES IN CONCENTRATED NITRIC ACID. If samples must be made with high concentrations of
nitric acid, they should be measured shortly after preparation, to avoid fluor decomposition. The
samples need to have their quench compared to standard samples of the same acid composition
and short time following preparation. 

TRITIUM IN RAINWATER. Some methods of collecting rainwater involve funneling from a large
surface area (like a roof) into a collection bottle through a spout. Rainwater itself contains many
contaminants, such as carbon dioxide, sulfur dioxide, and polycyclic aromatic hydrocarbons
(PAHs from fossil fuel combustion), which can act as significant quench agents. Furthermore,
the surface through which the water is collected may contain accumulated particulate matter that
also can affect the quench. Distilling the sample would minimize the effect of their quench.
Without this, the quench would be increased and the �apparent� value would have a significant
uncertainty associated with it.

18.5.6 Summary Guidance on Instrument Calibration, Background, and Quality Control

Radiation detectors and nuclear instrumentation, such as spectrometry systems, should be
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calibrated and maintained according to protocols and procedures documented in the laboratory�s
standard operating procedures and quality manual. The important calibration parameters, the
performance criteria used to monitor these calibration parameters, and the frequency of re-
calibrations should be addressed in these documents. Another important parameter that should be
addressed is the detector background. Detector background measurements should be taken at an
appropriate frequency for the purposes of determining the net count rate of a test source and for
controlling contamination.

The following subsections discuss the important calibration and monitoring parameters
associated with nuclear instrumentation in common use at radioanalytical laboratories. At the end
of each subsection, a table provides some examples of performance criteria for the measurement
parameters and the frequency of monitoring of these parameters. The information in these
subsections conforms to ASTM E181, ANSI N42.12, and NELAC (2002) and uses the input of
the ASTM D19.04 Subcommittee on Methods of Radiochemical Analyses for Radioactivity in
Water. A few important concepts should be considered when reviewing the following sections
and summary Tables 18.5 through 18.8:

  � NIST-traceable radionuclide sources (or traceable to a national standards body) are to be used
for all calibrations when possible (see Chapter 15, Quantification of Radionuclides). Sources
used for QC checks do not have to be NIST-traceable.

  � The frequency of performing QC detector-response measurements, or evaluating a detector
background, is related to the risk (probability) that a laboratory will accept for not detecting
an instrument problem or a change in background, given a certain number of samples
analyzed. The acceptable risk for not detecting a problem may vary from one laboratory to
another. If an instrument QC response check is performed once every 10 samples (test
sources), then there is a possibility that nine samples may be counted on an instrument not
meeting quality specifications before a problem is detected. Therefore, it is more appropriate
to establish the frequency of instrument QC based on the number of samples processed rather
than on time schedules. The examples of instrument QC frequencies presented in the
following sections are considered practical for most laboratories.

  � Loss of control results from a calibration performance criterion not being met, any repair or
maintenance that could affect a calibration parameter, and any event (such as sudden loss of
power) that could affect calibration.

  � Even without loss of control, a counting or spectrometry system should be re-calibrated for
test-source radionuclides, matrices, and counting geometries at a frequency consistent with
specifications delineated in the laboratory�s quality manual.

  � For an accurate measurement of a detector�s counting efficiency and resolution, as well as for
a detector�s QC response checks,  the relative counting uncertainty (1σ) of the measurement
(net count or net response) or in the individual peaks associated with spectrometry systems
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should be 1 percent or less.

  � Detector background measurements are used for the calculation of a net measurement
response and for detector contamination control. A net measurement response is calculated
using a long-duration detector background measurement in order to minimize the counting
uncertainty of the measurement. Contamination control background measurements typically
are taken more frequently and are of shorter duration than those for net measurement
response applications. To determine possible gross contamination, the results from the
contamination control background measurements should be evaluated statistically and
compared to the long-duration background results.

18.5.6.1 Gas Proportional Counting Systems

CALIBRATIONS

Three parameters should be considered when calibrating a gas proportional counting system: 

  � Operating voltage settings on the alpha and beta voltage plateaus,
  � Detector counting efficiencies, and 
  � Crosstalk factors. 

Initially upon instrument setup, the manufacturer�s specifications for these three parameters
should be verified. It should be noted that the manufacturer�s specifications may be based upon
unique calibration sources and operating conditions that may not be similar to those used when
analyzing test sources. For example, the manufacturer�s detector efficiency and crosstalk factors
may be based on electroplated alpha and beta sources. For most laboratories, the typical test
source for GP counting is not an electroplated source, so the reference alpha and beta radio-
nuclides for calibration are not the same as the radionuclides used by the manufacturer in
developing the specifications. However, the detector�s alpha and beta voltage plateau settings
typically are not changed after instrument setup. The alpha and beta voltage plateau settings are
selected from plots of the applied detector voltage versus the observed count rate for pure alpha
and beta sources (see Chapter 15, Quantification of Radionuclides).

The next parameters to evaluate are the detector�s alpha and beta counting efficiencies for
various source geometries. Initially, the manufacturer�s detector efficiency for both alpha and
beta counting modes should be verified using electroplated sources. (Typical electroplated
calibration sources include 99Tc and 90Sr for beta sources and 230Th or 241Am for alpha sources.) A
detector�s counting efficiency should be determined for each radionuclide and method used to
analyze test sources. The detector efficiency should be determined for new or changed method
protocols and loss of instrument control. For test sources having mass loading, an efficiency
curve or mathematical function that describes the detector efficiency versus mass loading,
consistent with the expected test source mass range, should be developed. For any mass in the
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expected calibration range, the 95-percent confidence limits for the detection efficiency should
be within 10 percent of the fitted value for alpha sources and within 5 percent of the fitted value
for beta sources.

The crosstalk factors for the alpha counts into the beta channel (alpha crosstalk) and for the beta
counts in the alpha channel (beta crosstalk) should be determined when applicable. The
manufacturer�s specifications for the crosstalk factors using electroplated sources should be
verified prior to test source processing. Typical manufacturer specifications for electroplated
sources are less  than 1 percent alpha counts in the beta channel for 210Po and less than 0.1
percent beta counts in the alpha channel for 90Sr/Y. The alpha crosstalk factor will vary according
to the crosstalk parameter setup, decay scheme of the alpha emitting radionuclide, and the mass
(weight) of the source. Verify the manufacturer�s alpha crosstalk factor using the radionuclide
and crosstalk parameters setting specified by the manufacturer. The alpha crosstalk factor for
other radionuclides and source masses should be determined for each method, preferably at the
same time as determining the detector counting efficiency factors or efficiency versus source
mass function. The crosstalk factors may be method specific and should be determined during
initial calibration and after re-calibrations.

BACKGROUND

A detector�s background should be determined immediately after calibration and at the instru-
ment settings established for each method. An accurate estimate of a detector�s background is
needed to determine the net count rate of a source. For this application, a very long background,
with respect to the nominal counting time for the test sources, typically is needed depending on
the required detection limit. One approach for making long-duration background measurements
is to count a clean test-source mount long enough to achieve a relative counting uncertainty (1σ)
of less than 10 percent for alpha measurements and less than 3 percent for beta measurements.
Alternatively, the counting time for a long-duration background measurement should be between
one and four times the nominal counting duration of test sources for a given matrix and
application. A long-duration background measurement should be conducted on a monthly basis.
A statistical test should be used to determine if the detector�s background has changed from the
initial background determination. 

When required, a detector may be evaluated frequently for gross contamination using a short-
duration counting interval. When the counting duration of test sources is short (less than one
hour), a short-duration background measurement should be conducted prior to processing test
sources. When the test-source counting time is longer, the background time interval should be the
same as the test sources, and the background should be determined before and after a sample (test
source) batch.

CALIBRATION QC CHECKS
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Once a GP counting system has been calibrated, the detector�s response should be monitored
frequently to determine if a significant change has occurred. Typically, a tolerance limit or
control chart (Section 18.3, �Evaluation of Performance Indicators�) is established to monitor the
detector�s response and to flag responses that exceed pre-established control limits. A tolerance
limit or control chart should be established immediately after the initial counting efficiency
calibration, and after instrument loss of control. A tolerance limit or control chart should be set at
± 3% or 3σ. Once a chart has been established, an instrument or detector response check should
be performed after a counting-gas change and daily for short test-source counting intervals. For
longer test-source counting times, a detector response check for a multi-sample shelf unit should
be conducted prior to test source counting, while a detector response check for a sequential
sample counter should be performed before and after the sample batch. 

TABLE 18.5 � Example gas proportional instrument calibration, 
background frequency, and performance criteria

Calibration Need
Measurement
Parameters Performance Frequency Performance Criteria

Calibration Alpha and beta
plateaus and
operating voltages

Prior to initial use and after loss of control. Verify manufacturer�s specifications. 

Plot voltage vs. count rate to determine
proper operating voltages.

Alpha and beta
crosstalk factors 

Prior to initial use, after loss of control,
and upon incorporation of new or changed
instrument settings.

Verify manufacturer�s specifications.
Determine crosstalk factors for each
nuclide, matrix and method. For mass-
loaded test sources, determine crosstalk
factors for the nuclide as a function of
test source mass

Detector counting
efficiency

Prior to initial use, after loss of control,
and upon incorporation of new or changed
instrument settings.

Verify manufacturer�s specifications. A
1σ counting uncertainty of #1% should
be achieved for all detector efficiency
determinations.

a) Weightless
sources

Prior to initial use, after loss of control,
and upon incorporation of new or changed
instrument settings. Recalibrate per quality
manual.

Zero-mass sources using the same radio-
nuclide of interest.

b) Mass-loaded
sources

Prior to initial use, after loss of control,
and upon incorporation of new or changed
instrument settings. Recalibrate per quality
manual.

For radionuclide of interest, establish
mathematical function (curve) of
detector efficiency vs. source mass
loading. 95% confidence limit of the
fitted function (curve) over the
calibration range to #10% and #5%
uncertainty for alpha and beta,
respectively.

Detector
Background

Determine alpha and beta background
initially and after efficiency calibration.

Verify manufacturer�s specifications. 

a) Short count for
gross contamina-
tion control

Detector
background using a
contamination-free
source mount

Daily for short test-source counting
intervals. For longer test-source counts,
use the same interval as the test sources
before and after a sample batch.

Use a statistical test to determine if the
new background count rate is different
from the initial (at time of calibration)
long background count rate.
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b) Long count for
background
subtraction of test
sources and blanks

Detector back-
ground using a
contamination-free
source mount

Monthly when system is in use. Establish a background count rate value
based on measurement uncertainty or
count a long background for a time
interval that is 1 to 4 times the typical
test-source counting time. Use statistical
testing to determine a change in the long
background count rate value.

Calibration QC
check � detector
response check

Count rate using a
radionuclide
source of approp-
riate emission and
energy

Develop detector response control chart
immediately after calibration and loss of
control. Perform detector response check
daily, prior-to-use, or bracketing a sample
batch depending on test source counting
time.

Count QC source to reach net 1σ
counting uncertainty of #1%.

For all detector response checks,
compare performance to control chart or
tolerance limits: ±3σ or ±3%.

18.5.6.2 Gamma-Ray Detectors and Spectrometry Systems

CALIBRATIONS

Three parameters should be considered when calibrating a gamma-ray (photon) detector or
spectrometry system. These include the energy (gain and base) calibration, energy resolution, and
the detector efficiency calibration for a particular geometry and matrix combination. Initially
upon instrument setup, the manufacturer�s specifications for the latter two parameters should be
verified for a detector. It should be noted that verification of the manufacturer�s specifications
may require different instrument settings, sources, and geometries compared to those used during
normal test-source analyses.
 
The energy calibration covers the photon energy range of the desired radionuclides expected in
test sources. This calibration involves adjusting the gain of the system amplifier so that a specific
slope calibration can be achieved (e.g., 0.5 keV/channel). At least two widely spaced photon
peaks are needed to determine the energy calibration (Section 17.3.1, �Gamma Spectrometry�). It
should be noted that verification of the manufacturer�s specification for detector resolution may
require a difference in energy calibration (e.g., 0.10 or 0.25 keV per channel) compared to the
energy calibration settings used for typical test sources. For most modern spectrometry systems,
the instrument energy parameters are very stable. The energy calibration parameter should be
monitored as appropriate to support data-reduction algorithm requirements for energy fit and
resolution. Typically, the determination of the energy calibration parameter can be made from the
data acquired from the daily detector response QC measurement. A tolerance limit on the maxi-
mum energy calibration deviation, rather than a QC chart, can be used as an alternate to verifying
amplifier output voltages. A pass-fail criterion for peak position also should be established. For
example, the channel number that the 137Cs 661.6 keV peak can change should be less than two
channels. Some software applications adjust the energy of the gamma-ray spectrum using the
daily energy calibration data. Such applications do not require changes in the settings of the
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system�s electronics.

The manufacturer�s detector resolution, expressed as the FWHM in keV at specific photon
energies, should be verified prior to use. Manufacturers of detector systems routinely establish an
energy calibration of 0.25 or 0.10 keV/channel by adjusting the gain of the detection system
amplifier. The FWHM and the peak-to-Compton ratio are both measured at a specified distance
from the detector. Analytical laboratories frequently calibrate energies at approximately 0.50
keV/channel. Thus, prior to initial calibration or when re-calibration is necessary, the analytical
laboratory should duplicate the manufacturers conditions for FWHM and peak-to-Compton ratio
at the manufacturers stated initial conditions for the detector. It should be noted that the detector
resolution varies with energy (Chapter 15) and can be affected by such factors as temperature,
humidity, vibration, poor connectors, or poor line-voltage conditioning. The QC check sources
used for the detector response check typically are used for resolution measurements during test-
sources analyses. For a combined detector response and resolution check, the radionuclides
selected for the QC source have photon energies that normally cover the low, middle, and high
energies of the desired range (e.g., 241Am, 137Cs, and 60Co). The photon energies selected for the
resolution check should be sufficiently separated to avoid other interfering peaks. If the energy
calibration settings for routine test source analyses is 0.5 keV per channel or greater, a resolution
check may only indicate gross or substantial changes in a detector�s resolution (e.g., greater than
10 to 20 percent). Photopeaks with greater than 10,000 counts are needed for routine resolution
checks. Once the routine (operational) resolution value has been determined, limiting the maxi-
mum resolution deviation with an acceptable tolerance limit may be more suitable than using a
QC chart. QC verification of resolution should be performed on a pass-fail basis. Since the
FWHM varies as a function of energy, each peak should have its own acceptance criterion.

The peak-to-Compton ratio is an important characteristic of the detector that needs to be
compared with the manufacturers specification upon initial detector calibration. This ensures that
the maximum sensitivity for full energy peak (FEP) analysis is achieved, and the correct
semiconductor crystal has been installed in the detector housing. See Section 15.6.2.1, �Detector
Requirements and Characteristics,� for the definition and technical basis for the peak-to-
Compton ratio determination. This parameter needs to be checked during initial detector setup or
prior to detector recalibration.

The next parameter that should be evaluated is the detector�s efficiency response as a function of
energy and matrix. The manufacturer�s specification for detector efficiency is relative the
efficiency of a 76 × 76 mm NaI detector responding to to 57Co, 137Cs, and 60Co point sources at a
distance of 25 cm from the detector. The standard NaI efficiency for this detector size and a 60Co
point source is 0.1 percent. (Gilmore and Hemingway, 1995). For each geometry/matrix
combination used for test-source analyses, a gamma-ray efficiency versus energy response
function (curve) must be determined. It is important that the same geometry and matrix be used
for the calibration and test sources. This includes the container for these sources, as well as their
physical placement relative to the detector. The efficiency check should span the energy range of
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radionuclides of interest. For commercially available mixed radionuclide calibration sources, 10
data points per calibration curve is typical, covering the range of 59 keV (241Am) to 1,836 (88Y)
keV. The 95 percent confidence limit of the fitted curve should be under 8 percent over the
calibration energy region. A detector response QC chart should be established immediately after
the first calibration for the detector. 

DETECTOR BACKGROUND

A detector�s background should be determined immediately after calibration with or without a
counting container, depending on the inherent radionuclide activity levels in the counting
container. An accurate estimate of a detector�s background in a radionuclide photopeak is needed
when determining the net photopeak count rate of a source. For this application, a very long
background with respect to the nominal counting time for the test sources typically is needed,
depending on the required detection limit. One approach for making long-duration background
measurements is to count a clean test source mount to achieve a relative counting uncertainty
(1σ) for major photopeaks that is #10 percent. Alternatively, the counting interval for the long
count should be between one and four times the nominal counting interval of the test sources. A
long detector background measurement should be conducted on a monthly or quarterly basis. A
statistical test should be used to determine if the detector background in a photopeak has changed
significantly from the initial background determination. Acceptable integrated background values
will be defined by the measurement limits desired by the analytical method. The statistical
criterion that constitutes a significant change should be stated in the laboratory�s quality manual.

When required, the detector�s background may be evaluated for gross contamination on a
frequent basis using a short counting interval. Once the long background count rate has been
determined, a shorter background count can be made and the results compared statistically to the
long background count rate to determine possible detector contamination. For the short back-
ground, the energy region between about 50 and 2,000 keV is integrated. The counting time for
the short background count should be set so that the relative counting uncertainty (1σ) of the
integrated counts is #3 percent. A limit in the deviation of the integrated background value may
be set using a tolerance limit or control chart. It should be verified that no extraneous peaks are
identified, indicating lower-level contamination (i.e., no new peaks in the short background
spectrum compared to previous spectra)

CALIBRATION QC CHECKS

After the initial detector calibration, a control chart or tolerance limit should be established
(Section 18.3, �Evaluation of Performance Indicators�). Such a chart may be generated using a
noncalibrated, but reproducible geometry. This source does not necessarily need to be a primary-
grade calibration source, but a sealed source that is well characterized and stable. The purpose of
this QC source is to validate that the detector performance is reproducible on a day-to-day basis
for the detector efficiency, energy response, and resolution. These characteristics can be used on
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a relative basis for the QC source as long as it is stable and sealed, so that its only change will be
as the result of radioactive decay (which can be accounted for mathematically). It must cover a
reasonable energy range (low, middle, and high energies), and the generated QC data should have
a relative 1σ uncertainty of under 1 percent. The detector-efficiency QC response check should
have a tolerance limit or control chart set at ± 3 percent or 3σ. Monitoring of gamma-ray energy
resolution (as measured by the FWHM) typically is a tolerance-limit measurement. Thus, an
upper bound for this value at specified energies in the calibrated range will serve as the indicator
of this parameter. For example, if the acceptable limit for FWHM at the 1,332 energy peak of
60Co is 2.2 keV, any value greater than 2.2 keV at this energy would cause the system to be out of
tolerance. A similar situation exists for the energy QC. An upper and lower limit, based on
temperature drift of the electronics and detector system, should be used as a tolerance limit.
Thus, the example of the 60Co peak the band of acceptable energies that the instrument measures
could be from 1,331.5 to 1,333.4 keV. The small changes in parameters such as these do not
significantly affect the measurement. The idea of the tolerance limit here puts a bound where an
effect can indicate performance issues. It is important to note that some gamma-ray spectrometry
software systems use information obtained from the daily energy QC measurement to adjust for
the energy response difference when analyzing a spectrum. Any changes to the configuration,
integrity or geometry of the QC standard due to age warrants an investigation of its validity.

TABLE 18.6 � Example gamma spectrometry instrument calibration, 
background frequency, and performance criteria

Calibration Need
Measurement 

Parameters
Performance
Frequency

Performance
Criteria

Calibration Detector energy calibration and
high resolution peak to Compton
measurements

Prior to initial use
and after loss of
control

Peak resolution; peak-to-Compton ratio
(actual vs. manufacturer); equations for
energy calibration; and shift in energy vs.
channel number.

Counting efficiency: matrix- and
geometry-specific

Prior to initial use,
after loss of control,
and as required by
quality manual.

Efficiency vs. energy for each geometry/
matrix. 95% confidence limit of the fitted
function: #8% over energy range.

Background � Short
count for controlling
gross contamination 

Integrate spectrum from ~50�
2,000 keV

Daily or prior to use. No extraneous peaks; tolerance limit or
control chart: ± 3% or 3σ .

Background � Long
count for subtracting
background from
blanks or test sources

Establish background peak/
region-of-interest (ROI) count
rate and uncertainty for inherent
radionuclides in detector, shield,
and the counting geometry vessel.

Monthly or quarterly Statistical test of successive counts and
count rates for ROI show no significant
difference.

Calibration QC check
� Detector response

Energy, efficiency, and resolution Daily or prior to use Verify peak shift within tolerance limit;
verify efficiency within control para-
meters; verify resolution in tolerance
limit.
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18.5.6.3 Alpha Detector and Spectrometry Systems

CALIBRATIONS

Three parameters should be considered when calibrating an alpha detector or spectrometry
system. These include the energy (gain and base) calibration, energy resolution, and the detector
efficiency for a particular combination of geometry and matrix. Additionally, a detector�s leakage
current typically is monitored to detect detector problems and possible detector-chamber light
leaks. The manufacturer�s specifications for detector resolution and efficiency should be verified
initially upon instrument setup. Verifying the manufacturer�s specifications may require different
instrument settings and sources compared to those used during normal test-source analyses. The
instrument setup and source geometry details normally are included in the manufacturer�s
documentation for a semiconductor alpha detector. The manufacturer�s detector resolution
(FWHM) in MeV is measured using an electroplated 241Am point source in a near vacuum.

The energy calibration should be applicable to the alpha energies of the radionuclides expected in
the test sources. This calibration involves adjusting the gain of the system amplifier so that a
specific energy slope calibration can be achieved to cover a desired energy range. A typical
energy range is between 3 and 8 MeV for long-lived radionuclides and between 3 and 10 MeV
for short-lived radionuclides. At least two widely spaced alpha peaks are needed to determine the
energy calibration. An energy calibration should be a linear response. However, the acceptable
deviation in the energy gain (MeV per channel) depends on the total number of channels and the
range of the energy spectrum.

A detector�s peak counting efficiency should be determined for each test-source geometry/matrix
combination that will be used. Calibration source mounts should be equivalent to the test-source
mount (electroplated or microprecipitate) and have the radionuclide of interest or a radionuclide
with about the same alpha energy. Most radioanalytical methods using alpha spectrometry
incorporate a radioisotope tracer (radiotracer) into the sample processing scheme as a means to
determine the sample-specific, chemical-yield detector-efficiency factor. For these methods, a
separate detector efficiency calibration is not needed. When radiotracers are not used to deter-
mine the chemical-yield-to-detector efficiency factor, a detector should be calibrated for each
test-source mounting geometry according to the frequency specified in the laboratory�s quality
manual. For this calibration, the peak efficiency should be determined using the average of at
least two alpha peaks. When measuring a detector�s counting efficiency, the source should be
counted sufficiently long so that the relative uncertainty (1σ) of the alpha peak(s) count is #3 to
#1 percent.

DETECTOR BACKGROUND

A detector�s background should be determined immediately after detector installation, instrument
setup, detector calibration, or loss of control. The background counts in an alpha peak or a region
of interest for the expected radionuclides should be integrated. A blank test source mount (filter
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medium or blank electroplated mount) should be counted for a time interval between one and
four times the typical test-source counting time. A detector background measurement should be
conducted on a monthly basis, and the results tracked. When test sources contain certain
radionuclides that may contaminate the detector (see Chapter 15), a background should be taken
after counting the test source. A statistical test should be applied to determine if the detector
background in a photopeak or region of interest has changed compared to the initial background
determination. Acceptable integrated background values will be defined by the measurement
limits desired by the analytical method.

CALIBRATION QC CHECKS

When no radiotracer is used in a method, a detector efficiency determination should be
performed at least monthly. The detector efficiency parameter should be recorded and evaluated
for changes using a tolerance limit or control chart. The detector efficiency QC response check
should have a tolerance limit or control chart set at ± 3% or 3σ. In addition, when a radiotracer is
not used, a spectral energy response should be performed weekly.

Frequent use of a calibration source may lead to progressive contamination that may become
significant, as a result of atom recoil from the source (Chapter 15). An electronic pulser may be
used to check the spectrometry system, but not all parameters will be evaluated. 

TABLE 18.7 � Example alpha spectrometry instrument calibration, 
background frequency, and performance criteria

Calibration
Need

Measurement
Parameters Performance Frequency Performance Criteria

Calibration Energy and
FWHM peak
resolution

Prior to initial use and after loss of
control.

Verify manufacturer�s specifications for alpha
peak resolution and detector leakage current. 

Detector counting
efficiency

Prior to initial use, after loss of control,
and upon incorporation of new or
changed instrument settings.

Nonradiotracer applications � calibrate
per quality manual

For radiotracer applications, use
radiotracer with every test source.

Verify manufacturer�s specifications point-
source efficiency. 

Nonradiotracer applications, calibrate each test
source mounting geometry. 

For radiotracer and nonradiotracer applica-
tions, 1σ relative counting uncertainty # 3% to
# 1%.

Detector
Background

Detector
background � ROIs
or alpha peaks

Prior to initial use or after initial
calibration and monthly.

Verify manufacturer�s specifications. Count a
blank test -source mount (filter medium or
blank electrodeposited mount) for at least 1�4
times the typical test-source counting time and
determine the ROI or alpha peak background
levels for background subtraction and
contamination control. Track background for
each radionuclide�s ROI or alpha peak.

Use a statistical test to determine a change in
the long background count rate value for a
ROI or alpha peak.
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Calibration QC
check � detector
response check 

Determine peak
location,
resolution, and
ROI/alpha peak
efficiency (where
counting efficiency
is an analytical
requirement) using
at least two alpha
peaks.

When radiotracers are used routinely,
the radiotracer can estimate the peak
location, gross peak resolution, and
provide the detector efficiency�
chemical-yield factor. 

When no radiotracer is used, a detector
efficiency check should be performed
at least monthly and an energy check
weekly. 

For nonradiotracer detector response checks,
use a tolerance limit or control chart: ±3% or
3σ.

18.5.6.4 Liquid Scintillation Systems

CALIBRATIONS

Following the setup of a liquid scintillation (LS) counting system, the manufacturer�s specifi-
cations for counting efficiency should be verified with the appropriate reference radionuclides
sources, typically unquenched LS cocktails tagged with 3H and/or 14C. As part of the instrument
setup, the energy regions of interest (ROIs) or energy windows for the beta spectra of the radio-
nuclides should be established. A tolerance limit or QC chart can be prepared at this time using
unquenched LS standards. 

The LS counting system should be calibrated specifically for a radionuclide/method application.
Verify that the recommended dark-adapt time for each cocktail used in the analyses is consistent
with the recommendation of the instrument or cocktail manufacturer. For method calibrations,
two different approaches are taken commonly to determine the detector efficiency. These include
the development of an efficiency-response/quench curve and the standard addition approach.
When establishing a quench curve, a minimum of five calibration sources of different quench
factors should be used, and the individual calibration sources should be counted to give a ROI
relative counting uncertainty (1σ) of less than 1 percent. A mathematical function and quench
curve should be developed so that the 95 percent confidence limit of the function is less than 5
percent over the expected quench range of the sources. For the standard addition approach, where
a spike of the radionuclide of interest is added to a duplicate test source (or the original test
source after the first analysis), the activity of the spike should be at least four times the anticipa-
ted maximum radionuclide activity in a test source. Such standard addition measurements assure
that an unknown quench agent or interferent is not having an appreciable affect on the test source
quench. The spiked test sources should be counted so that the ROI relative counting uncertainty
is less than 3 percent. The deviation in duplicate spiked test source measurements should be
evaluated statistically using the methods in Chapter 7 (Evaluating Methods and Laboratories) for
matrix-spiked duplicates. This ensures that sample homogeneity and sample handling practices
are not appreciably affecting the sample analysis. 
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INSTRUMENT BACKGROUND AND METHOD BLANKS 

For methods that have quenched test sources, a quenched method blank (or mean of several
quenched blanks) should be used to determine the background count rate that is subtracted from
the count rate of the quenched test sources in a batch. A method background is determined by
counting a blank sample that has been taken through the analytical process for the radionuclide of
interest and determining its quench. When prepared in this manner, the blank will have a quench
value similar to that of the test sources in the batch having the approximately the same quench
factor. The counting interval of the blank should be the same or longer than the counting interval
of test sources in the batch. Multiple quenched blank measurements should be made to establish
a mean quenched-background value and standard uncertainty of the mean (standard error of the
mean). These parameters should be used to determine the net count rate (and combined standard
uncertainty) of test sources within a batch of samples. The ROI count rate of the quenched blank
test source (processed with each batch of test sources) should be recorded and monitored. A
statistical test is recommended to determine a change in the quenched background from batch to
batch.

For the standard addition approach to analyzing test sources, a blank sample should be processed
with each batch of samples. The counting interval of the blank should be the same or longer than
the counting interval of test sources in the batch. The efficiency corrected blank activity (or mean
of several batches) should be subtracted from the activities of the test sources uncorrected for
chemical yield. 

Longer instrument backgrounds with unquenched blank test sources may be taken for instrument-
contamination control and to detect light leakage or photomultiplier tube degradation. This
background measurement, which is the integral of the total energy spectrum, should be taken
after initial instrument setup and monthly thereafter. The counting interval should be sufficiently
long to reach an integrated spectrum count that has a relative 1σ counting uncertainty of about 1
percent. The background data should be recorded and monitored. A statistical test to determine a
change in the long integrated background count rate value is recommended. 

CALIBRATION QC CHECKS

Once a liquid scintillation counting system has been calibrated, the detector�s response should be
monitored frequently to determine if a significant change has occurred. Typically, the unquench-
ed reference radionuclides test sources (3H and/or 14C) provided by the manufacturer for instru-
ment setup are used for the QC check sources. The detector�s response, measured as the
integrated counts in the energy ROIs for the beta spectra of the radionuclides, should be
established. A tolerance limit or control chart (Section 18.3) is used to monitor the detector�s
response and to reveal changes in response that exceed pre-established control limits. A tolerance
limit or control chart should be established immediately after the instrument setup and after
instrument loss of control. Normally, a QC source is counted to reach a relative 1σ counting
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uncertainty of under 1 percent in the ROI. The detector efficiency QC response check should
have a tolerance limit or control chart set at ± 3 percent or 3σ. Once a tolerance limit or control
chart has been established, an instrument/detector response check should be performed before
each sample batch for short test-source counting intervals, and before and after a sample batch
for longer counting intervals. 

TABLE 18.8 � Example liquid scintillation counting systems calibration, 
background frequency, and performance criteria

Calibration Need
Measurement 

Parameters
Performance
Frequency

Performance
Criteria

Calibration ROI calibration with
unquenched reference
standards (typically 3H and
14C)

Prior to initial use and after loss
of control and recalibrate per
quality manual.

Verify sealed standards activity.

Energy distribution of
unquenched standard matches
manufacturer�s.

Method calibration
(determining quenching)

Quench curve (at least five
points) for each radionuclide
and LS cocktail matrix.

Prior to method application,
matrix, and cocktail changes.
Recalibrate per quality manual.

Count individual calibration
source to achieve ROI (1σ)
measurement uncertainty of
#1%.  95% confidence limit of
the fitted function <5% 

Internal standard or standard
addition � radionuclide of
interest.

Add a spike to a duplicate
processed sample or add a
spike to a sample that has been
counted and then recount.

Statistically evaluate replicate
test-source analyses.

Background Method background �
quenched.

Each batch. Use a statistical test to
determine a change in the
quenched background ROI
count rate value. 

Long count background-
unquenched blank.

Prior to initial use and monthly. Monitoring of detector/
instrument contamination and
electronic degradation based on
integrated counts of entire
spectrum.  

Calibration QC Check �
detector response check 

ROI for unquenched
reference standards (typically
3H and/or 14C)

Prior to use for short counting
intervals. Before and after a test
source batch for longer
counting intervals.

Control chart or tolerance limit:
± 3σ or ± 3%.

18.5.7 Non-Nuclear Instrumentation

Radionuclides can also be measured using non-nuclear instrumentation such as mass
spectrometry, fluorimetry, and phosphorimetry. These methods of analysis are discussed briefly
in Chapter 15, Quantification of Radionuclides. Analysts can apply many of the laboratory QC
techniques discussed in Sections 18.3, 18.4, and 18.6 because they are basic to any laboratory
method. A quality program using statistically based control charts of the performance indicators
will identify out-of-control situations, assist in improving laboratory performance, and aid in
identifying the causes of trends and biases for any laboratory method. Analysts also need to
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consider detection capabilities, radionuclide equilibrium, half-life, interferences, and blind
samples when using non-nuclear instrumentation.

18.6 Related Concerns

18.6.1 Detection Capability

Issue: The detection capability of an analytical procedure is its ability to distinguish small
amounts of analyte from zero (Chapter 20). The detection capability of a procedure can be
estimated nominally and will depend on many factors. 

Discussion: In radioanalysis, the most commonly used measure of detection capability is the
minimum detectable concentration (Chapter 20). The MDC is defined as the smallest concentra-
tion of an analyte that has a specified probability of detection. The MDC is usually estimated as a
nominal scoping performance measure of an analytical procedure, but a sample-specific version
is reported routinely by many laboratories.

Detection capability is affected by many factors, including counting times, instrument back-
ground levels, aliquant volume, yield, decay times, and interferences. The nominal MDC is
presumably based on conservative assumptions about these factors, but measurement conditions
vary. The sample-specific MDC is calculated using the actual measured values of all these
factors. A high MDC by itself does not indicate that a sample result is invalid or that it cannot be
used for its intended purpose. However, if an analysis fails to detect the analyte of interest and
the sample-specific MDC is greater than a detection limit required by contract or other
agreement, it may be necessary to reanalyze the sample in a way that reduces the MDC. Such
decisions should be made case-by-case, since it is not always cost-effective or even possible to
reanalyze a sample, or it may not be feasible to achieve the desired MDC.

Excursions: A high sample-specific MDC can be caused by many factors, including:

  � Small sample aliquant;
  � Low chemical/tracer yield;
  � Short counting times;
  � Long decay/short ingrowth time;
  � High background or blank value; and
  � Low counting efficiency or sample self-attenuation.

18.6.2 Radioactive Equilibrium 

Issue: It is sometimes necessary to ensure that target radionuclides are in radioactive equilibrium
with their progeny, or to establish and correct for disequilibrium conditions. This is particularly
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applicable for protocols that involve the chemical separation of long-lived radionuclides from
their progeny. This is also applicable for nondestructive assays like gamma spectrometry where
photon emission from progeny is used to determine the concentration of the non-gamma ray
emitting parent (see Attachment 14A following Chapter 14 for a more thorough discussion on
radioactive equilibrium). 

Discussion: Some radionuclides that have long physical half-lives decay to species whose half-
lives are shorter by several orders of magnitude. Following chemical separation of the parent, the
progeny can �grow in� within a time frame relevant to analysis and provide measurable radio-
active emissions that should be considered in the analytical method. The condition where the
parent and progeny radionuclide are equal in activity is called �secular equilibrium.� An example
is 226R, a common, naturally occurring radionuclide in the uranium series with a half-life of about
1,600 years. 226Ra is found in water and soil, typically in secular equilibrium with a series of
shorter-lived radionuclides that begins with the 3.8-day-half-life 222Rn and ends with stable lead.
As soon as 226Ra is chemically separated from its progeny in an analytical procedure via
coprecipitation with barium sulfate, its progeny begin to reaccumulate. The progeny exhibit a
variety of alpha, beta and gamma emissions, some of which will be detected when the precipitate
is counted. The activity due to the ingrowth of radon progeny should be considered when evalua-
ting the counting data (Kirby, 1954). If counting is performed soon after chemical separation,
secular equilibrium will be substantially incomplete and a sample-specific correction factor
should be calculated and applied. In some cases, it may be necessary to derive correction factors
for radioactive ingrowth and decay during the time the sample is counting. These factors are
radionuclide specific, and should be evaluated for each analytical method.

Secular equilibrium concerns also apply to non destructive assays, particularly for uranium and
thorium series radionuclides. Important radionuclides in these series (e.g., 238U and 232Th) have
photon emissions that are weak or otherwise difficult to measure, while their shorter-lived
primary, secondary or tertiary progeny are easily measured. This allows for the parents to be
quantified indirectly, i.e., their concentration is determined by measuring their progeny and
accounting for the amount of parent-progeny equilibrium. The amount of parent-progeny secular
equilibrium is fundamental to these analyses, and data should be scrutinized to insure that the
amount is valid.

When several radionuclides from one decay chain are measured in a sample, observed activity
ratios can be compared to those predicted by decay and ingrowth calculations, the history of the
sample and other information. For example, undisturbed soil typically contains natural uranium
with approximately equal activities of 238U and 234U, while water samples often have very
different 238U/234U ratio. Data from ores or materials involved in processing that could disrupt
naturally occurring relationships require close attention in this regard.

All numerical protocols (electronic and manual) should be evaluated to determine if there is bias
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with respect to correction factors related to equilibrium concerns. This includes a check of all
constants and units used to derive such correction factors, as well as the use of input data that
unambiguously state the time of all pertinent events (chemical separation and sample counting).
The analyst should ensure that samples requiring progeny ingrowth are held for sufficient time
before counting to establish secular equilibrium. Limits for minimum ingrowth and maximum
decay times should be established for all analytical methods where they are pertinent. For
ingrowth, the limits should reflect the minimum time required to ensure that the radionuclide(s)
of interest has accumulated sufficiently to not adversely affect the detection limit or uncertainty.
Conversely, the time for radioactive decay of the radionuclides of interest should be limited such
that the decay factor does not elevate the MDC or adversely affect the measurement uncertainty.
These will vary depending on the radionuclide(s) and analytical method.

Excursions: Samples where equilibrium is incorrectly assumed or calculated will produce data
that do not represent the true sample concentrations. It is difficult to detect errors in equilibrium
assumptions or calculations. Frequently, it takes anomalous or unanticipated results to identify
these errors. In these cases, analysts need to know the sample history or characteristics before
equilibrium errors can be identified and corrected. Some samples may not be amenable to
nondestructive assays because their equilibrium status cannot be determined; in such cases, other
analytical methods are indicated.

Examples:

Isotopic Distribution � Natural, Enriched and Depleted Uranium: Isotopic distribution is
particularly important with respect to uranium, an element that is ubiquitous in nature in soils
and also a contaminant in many site cleanups. The three predominant uranium isotopes of
interest are 238U, 234U, and 235U, which constitute 99.2745, 0.0055, and 0.72 atom percent,
respectively, of �natural� uranium,3 i.e., uranium as found in nature (Parrington et al., 1996).
However, human activities related to uranium typically involve changing the ratio of natural
uranium by separating the more readily fissionable 235U from natural uranium to produce
material �enriched� in 235U, for use in fuel cycle and nuclear weapons related activities.4

Typical 235U enrichments range from 2 percent for commercial reactor fuels to greater than 90
percent 235U for weapons. The enrichment process also produces material that is �depleted� in
235U, i.e., the uranium from which the 235U was taken. While the 235U concentrations of
depleted uranium are reduced relative to natural ores, they still can be measured by several
assay techniques. This gives rise to uranium with three distinct distributions of 238U, 235U, and
234U, referred to as �natural,� �enriched,� and �depleted� uranium. Because 238U, 235U, and
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234U are alpha emitters with considerably different physical half-lives and specific activities, a
measurement of a sample�s total uranium alpha activity cannot be used to quantify the
sample�s isotopic composition or uranium mass without knowing if the uranium is natural or
has been enriched or depleted in 235U. However, if this information is known, measurement
and distribution of the sample�s uranium alpha activity can be used to infer values for a
sample�s uranium mass and for the activities of the isotopes 238U, 235U, and 234U. This ratio
can be determined directly or empirically using mass or alpha spectrometry, techniques which
are time and cost intensive, but which provide the material�s definitive isotopic distribution.
It is often practical to perform mass or alpha spectrometry on representative samples from a
site to establish the material�s isotopic distribution, assuming all samples from a given area
are comparable in this respect. Once established, this ratio can be applied to measurements of
uranium alpha activity to derive activity concentrations for 238U, 234U, and 235U data.

18.6.3 Half-Life

Issue: Radionuclides with short half-lives relative to the time frame of the analysis may decay
significantly from the time of sample collection or chemical separation to counting. In some
cases, this decay will cause the ingrowth of other short-lived radionuclides. In both instances,
sample-specific factors should be applied to correct the sample�s observed counting/disintegra-
tion rate. Also, determination of half-life could indicate sample purity. If radioactive impurities
are not appropriately corrected, analytical errors will occur. Repetitive counting of the test source
may confirm the radionuclide�s half-life, and thus the radioactive purity of the test source. 

Discussion: When assaying for short-lived radionuclides, data should be corrected for decay over
the time period between sample collection and counting. For example, operating power reactors
routinely assay environmental samples for 131I, a fission product with about an eight-day half-life.
Samples may be counted for several days up to two weeks, during which time their 131I concen-
tration is decreasing via radioactive decay. Using the eight-day half-life, the counting data should
be decay-corrected to the ending time of collection in the field and corrected for decay before and
during counting. If desired, environmental samples can be decay-corrected to a time other than
sample collection.

Half-life considerations also apply to radionuclide ingrowth. Certain radionuclides are assayed by
an initial chemical separation, which begins a time period over which their direct progeny are
allowed to reach a near-secular equilibrium condition. This is followed by additional chemical
separation, purification, and counting of the progeny. The degree of the progeny�s ingrowth is
calculated based on the radionuclides� half-lives and the elapsed time between the two chemical
separations. Allowance should also be made for the progeny�s decay from separation to counting
and for decay that occurred while counting, if applicable. Two examples are the beta emitting
radionuclides 228Ra and 90Sr: they are quantified by measuring the direct progeny of each, 228Ac
and 90Y, respectively. For airborne concentrations of 222Rn, sample collection and analytical
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methods should incorporate concerns related to the short-lived progeny of other radon species,
such as 220Rn. Other half-life related considerations apply to alpha spectrometry when assaying
samples for uranium and thorium chain radionuclides. Samples that have been allowed to sit for
several weeks may accumulate short-lived radionuclides that have alpha emissions whose
energies are in close proximity to target radionuclides. These can interfere with quantitative
analyses of the target radionuclides. Chemical yield tracers used in alpha spectrometry, such as
234Th and 232U, can cause this effect due to their short-lived progeny and all chemical yield tracers
should be scrutinized for this potential prior to their use in analytical methods. Radionuclide
specific limits for minimum ingrowth and maximum decay times should be established for all
analytical methods where they are pertinent. These should be based on limiting the adverse effect
of such calculations on the detection limit and measurement uncertainty. All analytical methods
involving computational corrections for radioactive decay of the target species should be
evaluated relative to half-life and secular equilibrium related concerns. This evaluation should be
incorporated in the routine data review process that is performed on all analytical results.

A good source for radionuclide half-lives and other nuclear data can be found at the Brookhaven
National Laboratory�s National Nuclear Data Center (www.nndc.bnl.gov/nndc/nudat/). Using
this data source will ensure consistency within and among laboratories, and will provide analysts
with the current values.

Excursions: Samples that are assayed by �non destructive� techniques like gamma spectrometry
may provide indications of potential complications due to half-life related considerations.
Because the assay provides information on photon emitting radionuclides in the sample, the
analyst can develop appropriate corrections for half-life related phenomena. However, non-
spectrometric techniques like gas flow proportional counting are essentially gross counting
procedures that record all events without any indication of their origin. Therefore, these data
should be evaluated to ensure they are free from half-life related considerations (e.g.,
radionuclide purity). 

Samples with short-lived radionuclide concentrations at or near environmental background will
experience elevated detection limits and increased measurement uncertainty if there is excessive
elapsed time between sample collection and counting. Because of the magnitude of the additional
correction (decay) factor for these samples, they usually have a larger measurement uncertainty
compared to longer-lived radionuclides, given equal measurement and sample conditions and
parameters.

18.6.4 Interferences

Issue: Chemical or radionuclide interferences can produce erroneous results or increased
measurement uncertainty.
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Discussion: Analytical samples, particularly environmental samples, are often chemically
complex. This complexity may include chemical constituents that interfere with an analytical
method to the point that they require modification of the method. Examples of modifications
include limiting the size of the sample aliquant, quantifying interfering compounds through other
analyses (radiometric and non-radiometric) and changing time periods to allow adequate
ingrowth of target radionuclides or decay of interferences. 

A common example is groundwater or well water that contains high concentrations of salts or
dissolved solids, so that screening for gross alpha activity produces erratic or anomalous results.
For such samples, it may be necessary to limit the aliquant volume with the resulting increase in
detection limit and measurement uncertainty. There is a salt concentration at which this
procedure cannot overcome the interferences and should not be used.

Samples that contain natural concentrations of stable or radioactive compounds that are added
during an analytical procedure (e.g., carrier or tracer) may also cause interference problems.
Because barium is used as a carrier, water samples that contain a high concentration of barium
may provide inaccurate carrier yields when screened for alpha-emitting radium isotopes.
Quantifying the sample�s barium content prospectively via a non-radiometric technique (e.g.,
atomic absorption) would be required to correct for this interference. With respect to radioactive
compounds, two examples are provided. The first involves the radiochemical procedure for
determining 228Ra in drinking water that separates radium via coprecipitation with barium sulfate.
The precipitate is allowed to come to equilibrium with its direct progeny 228Ac, which is separa-
ted via co-precipitation with yttrium oxalate, purified, mounted and counted. The yttrium
precipitate also carries 90Y, the direct progeny of 90Sr, a fission product often found in environ-
mental samples as a result of atmospheric weapons testing and nuclear fuel cycle activities. The
results of samples assayed for 228Ra that contain measurable amounts of 90Sr require corrections
because of the differences in half-lives (228Ac with a 6-hour half-life versus 90Y with a half-life of
about 64 hours) or other parameters. The second example involves alpha spectrometry proce-
dures that use tracers to determine chemical yield. For example, 234Th is used as a chemical yield
tracer for isotopic thorium analyses. The approach assumes that the sample�s inherent concentra-
tion of the tracer radionuclide is insignificant such that it will not interfere with the tracer�s
ability to accurately represent the sample�s chemical yield. Samples that contain measurable
amounts of these radionuclides may produce excessive interference and may not be amenable to
this procedure.

Alpha spectra should be checked for radionuclide interferences (e.g., a 232Th peak in uranium
spectra). If the 232Th peak is present due to incomplete chemical separation, 230Th may represent
interference in the 234U determination. Data should be corrected or the samples reanalyzed with
better target-radionuclide purification.

Each analytical method should be evaluated with respect to interferences during the method-
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validation stage. Such evaluations can be based on available information and, if properly
documented, can serve as the basis for developing the range of applicability, which becomes an
integral part of the protocol. Evaluating performance indicators aids in the identification of
samples that have interferences. All performance criteria would be protocol specific, and have
clearly established acceptance ranges that incorporate the potential interferences discussed above. 

Excursions: Interfering elements can affect measurement results in several ways. For example,
large amounts of non-analyte elements may overload ion exchange resins, affecting the resin�s
ability to collect all of the analyte. In addition, spiking elements, already in the sample prior to
preparation, may cause matrix spike results to exceed acceptance limits. 

Carrier/tracer yields exhibiting gradual changes that appear to be correlated with a batch or group
of samples from the same sampling location may indicate potentially interfering conditions. A
significant decrease in the carrier/tracer yield may indicate that the analytical method is not
functioning as planned. Yields that are significantly low or in excess of 100 percent may be
caused by competing reactions within the sample matrix, or by the presence of an inherent carrier
or tracer within the sample.

For screening analyses, e.g., gross alpha or beta, large changes in counting efficiencies or erratic
counting data can reflect the presence of salts. Samples of this type are hygroscopic and continue
to gain weight following preparation as they absorb moisture from the air. These changes could
be detected by reweighing the planchets directly prior to counting. These samples can be conver-
ted to oxides by carefully holding them over the open flame of a laboratory burner; however, this
will cause losses of volatile radionuclides, such as 210Po and 137Cs, which have alpha and beta
emissions, respectively. An alternative approach is to thoroughly dry each planchet, record the
weight and count it immediately, followed by a post-counting weighing to ensure that the weight
did not change significantly over the measurement period. This approach may not be practical for
all laboratories.

18.6.5 Negative Results

Issue: When an instrument background measurement is subtracted from a measurement of a low-
activity sample, it is possible to obtain a net activity value less than zero.

Discussion: Many factors influence the evaluation of negative results. The simplest case occurs
when the background measurement is unbiased and both the gross counts and background counts
are high enough that the distribution of the net count rate is approximately normal. In this case,
normal statistics can be used to determine whether a negative result indicates a problem. For
example, if a sample contains zero activity, there is a very small probability of obtaining a net
count rate more than two-and-a-half or three standard deviations below zero (i.e., negative
value). Since the combined standard uncertainty is an estimate of the standard deviation, a result
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that is less than zero by more than three times its combined standard uncertainty should be
investigated. In fact, if a blank sample is analyzed using an unbiased measurement process,
negative results can be expected about 50 percent of the time. As long as the magnitudes of
negative values are comparable to the estimated measurement uncertainties and there is no
discernible negative bias in a set of measurements, negative results should be accepted as
legitimate data and their uncertainty should be assessed. On the other hand, if a sample activity
value is far below zero, there may be a reason to investigate the result. A large percentage of
negative results may also indicate a problem, even if all of the results are near zero. When
instrument backgrounds are extremely low, statistics based on a normal distribution may not be
appropriate (Chapter 19).

A preponderance of results that are negative, even if they are close to zero, indicates either a
systematic error or correlations between the results. If the results are measured independently, a
pattern of negative results indicates a bias, which requires investigation.

Excursions: Negative results occur routinely when samples with low levels of activity are
analyzed, but a result should seldom be more than a few standard deviations below zero. Possible
causes for extremely negative results or for an excessive number of negative values include:

  � Instrument failure (low sample counts or high blank counts);
  � Positive bias in the background or reagent blank measurement;
  � Overestimation of interferences;
  � Wrong or inappropriate background data;
  � Data transcription error; or 
  � Calculation error.

18.6.6  Blind Samples

Issue: The performance of the analytical method should be assessed independently on a regular
basis. This assessment is achieved through the use of blind samples that provide an objective
means of evaluating the laboratory�s performance when analyzing specific analytes and matrices.
Blind samples can be internal or external, and either single or double. External blind perfor-
mance-testing (PT) samples (also called performance-evaluation, or PE, samples) are used for
QA purposes and also can provide information that is useful to laboratory QC. 

Discussion: A blind sample is a sample whose concentration is not known to the analyst, and
whose purpose is to assess analytical performance. Regardless of their nature, blind samples are
effective only when their contents are unknown to the analysts. The preparation of all blind and
other performance assessment samples is usually designated as a QA function. The QA staff
functions independently from personnel responsible for sample processing and analysis. Blind
samples consist of a matrix routinely processed by the laboratory that contains a known amount
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of one or more analytes (radionuclides). A blind sample also may take the form of a replicate
sample that is submitted for analysis such that its composition and origin are unknown to the
analyst. These can be split samples (if run in the same batch) or spiked samples, and are prepared
and submitted by an independent group either within the organization (internal), or from an
independent organization (external). Performance on blind samples should be an integral part of
the laboratory�s quality system, which includes routine evaluation of their analytical results
against specific performance criteria. For example, analysis of blind samples should be evaluated
for relevant performance indicators. Data that fall outside an acceptance criterion may indicate
loss of control in sample chemical processing, radiometric determination (counting) or other
aspects of the analytical process. The ability to prepare blind samples depends fundamentally on
the ability to obtain the appropriate combination of matrix with a radionuclide of a well-known
concentration, ideally traceable to NIST or other appropriate certifying body. Also important are
the expertise and experience of the preparer of the blind samples, proven and verified
methodologies used for the blind samples, and detailed documentation. The use of blind samples
assumes that their physical, chemical and radiological nature are similar to routine samples and
compatible with the analytical methods employed at the laboratory. 

When the analyst is aware that the sample is a blind sample but does not know the concentration,
these samples are called single blinds. The analyst may know what analytes the blind sample
contains, but not the analyte�s concentration. Single blinds and other internal samples of this type
are generally prepared by an organization�s QA personnel that are independent of the samples�
analyses. External single blind samples are available and can be obtained from several sources.

A double blind sample is a PT sample whose concentration and identity as a PT sample is known
to the submitter but not to the analyst. The double blind sample should be treated as a routine
sample by the analyst, so it is important that the double blind sample be identical in appearance
to routine samples. A replicate routine sample would be considered a double blind PT sample.
However, samples having sufficient measurable analyte are the most desirable as double blind
samples for measuring precision. In general, a double blind is thought to be a more rigorous
indication of the laboratory�s performance, since analysts and other laboratory personnel may
take special precautions when analyzing known PT samples, in anticipation of the greater
scrutiny associated with such samples. This should not happen with double blind samples, since
there should be no way to distinguish them from routine samples. However, true double blind
samples are difficult to prepare.

INTERNAL BLIND SAMPLES. Internal blind samples are prepared by the laboratory�s QA
personnel. Internal blind samples assess several aspects of the analytical process. They allow
the laboratory to demonstrate that it can successfully process routine samples for a specific
analysis; in other words, they get a measured result within accepted limits. They provide an
auditable, empirical record against specific quality performance criteria. They also demons-
trate the efficacy of analytical methods and areas in need of adjustment. Double blind
samples can pose logistical problems. It may be difficult to prepare internal double blind
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samples and submit them to the laboratory for analysis successfully disguised as routine
samples. Certain replicate routine samples are the exception. Evaluation criteria should be
established to identify when conditions are out of acceptance limits.

EXTERNAL BLIND SAMPLES. External blind samples are those prepared by an organization
outside that laboratory. This may be helpful with respect to ensuring that the analyte concen-
trations are truly unknown to the analyst; external blinds may offer a greater variety of
matrices and analytes than can easily be produced within the laboratory and augment the
laboratory�s internal quality control program. Alternatively, if external blinds are not
appropriate to the laboratory�s programs, they will be of limited utility.

If statistical differences between observed and known values typically arise, these should be
investigated thoroughly, as they indicate areas where important details of the analytical
process may have been overlooked. Often a laboratory�s observed values agree with the
known value within acceptable tolerances, but are biased high or low. Careful documentation
of the laboratory�s performance in this regard can assist in characterizing the fluctuations of a
measurement system or analytical method. Like other performance indicators, large or sudden
changes in bias require scrutiny.

Blind samples should be an integral part of the laboratory�s quality control program and they
should be processed according to a predetermined schedule. Important sources of external blind
samples include the NIST Radiochemistry Intercomparison Program (NRIP), National Voluntary
Accreditation Program (NVLAP/EPA), Food and Drug Administration, DOE Lab Accreditation
Program (DOELAP), Quality Assessment Program (DOE QAP), Multi-Analyte Performance
Evaluation Program (DOE MAPEP), and several commercial vendors.

Excursions: The excursions typically encountered with analytical methods for specific
parameters (carrier/tracer recovery, lack of precision, elevated backgrounds, etc.) apply to blind
samples as well. Additionally, instances where the analysis of external blinds produces values
that do not agree with the known values, may indicate that instrument calibrations or other
correction factors require reevaluation. Problems revealed by the analysis of blind blank samples
can indicate a problem (e.g., bias, blunder) within the laboratory, or conditions where the current
protocol is inadequate. Excursions discovered while analyzing samples from external PT
programs should be addressed.

18.6.7 Calibration of Apparatus Used for Mass and Volume Measurements

Issue: Fundamental to all quantitative analysis is the use of the proper masses and volumes.
Analysts should perform careful gravimetric and volumetric measurements (especially in the
preparation of calibration solutions, test sources, and reagents) in order to achieve the desired
levels of precision and bias in each analytical method. Therefore, laboratory balances and
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volumetric glassware and equipment should be calibrated and checked periodically to maintain
the desired method performance levels. This section discusses the calibrations of laboratory
balances and volumetric glassware and equipment. See Chapter 19, Attachment F, for further
discussion on mass measurements.

Discussion: Laboratory balances should be periodically calibrated and checked. Most balances
are typically calibrated and certified by the manufacturer once a year. These calibrations are
performed to achieve the manufacturer�s specified tolerances for each balance. A calibration
certificate is supplied to the laboratory. In addition to this yearly calibration, daily calibration
checks should be performed by the laboratory. Some laboratories check the balances once a day
or at the time of each use. Any balance failing the daily calibration check should be taken out of
service. Ordinarily, ASTM E617 Class 1 or 2 masses are used to perform the daily calibration
check, depending on application. Over time, daily wear and tear on the masses can affect
calibration, so it is a good idea to get them periodically re-certified or to purchase new masses. 

Volumetric glassware and equipment, especially those used in the preparation of instrument
calibration solutions and laboratory control samples, should be calibrated to the desired level of
accuracy. Calibration can either be performed by the manufacturer of the equipment or by
laboratory personnel. Calibration certificates for volumetric pipets and flasks are provided by the
manufacturer at the time of purchase. Borosilicate and Pyrex ® volumetric glassware will hold its
calibration indefinitely provided that it is not exposed to hydrofluoric acid, hot phosphoric acid
or strong alkalis, and that it is not heated above 150 EC when drying. Any glass volumetric pipet
with a damaged tip should be discarded or re-calibrated. The manufacturer of volumetric
automatic pipetting equipment calibrates the equipment and provides a certificate at the time of
purchase. The re-calibration of automatic equipment should be performed annually and can be
performed by the manufacturer, calibration specialty companies, or in-house laboratory
personnel. Outside calibration services should provide a calibration certificate.

Laboratory personnel can calibrate and check volumetric apparatus using procedures like those
specified in ASTM E542. Typically calibrations use volumes of water and are gravimetrically
based. Volumes are corrected for temperature and atmospheric pressure and require thoroughly
cleaned glassware, standard procedures for setting and reading the water meniscus, and accurate
balances and thermometers.

Volumetric glassware is calibrated either �to contain� (TC) or �to deliver� (TD). Glassware
designated as �to contain� has a mark referred to as the �fiducial mark.� When the vessel is filled
to that mark, it �contains� the designated volume. Emptying the vessel does not have any
quantitative measure associated with it. �To deliver� glassware is not to be completely emptied
or �blown out.� Specified volumes for TD glassware do not include the residual left from surface
adhesion and capillary action. TD glassware will perform with accuracy only when the inner
surface is so scrupulously clean that the water wets it immediately and forms a uniform film
when emptying. 
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ATTACHMENT 18A
Control Charts

18A.1 Introduction

This attachment provides statistical details to augment Section 18.3.2. The term �statistical
quality control� refers to QC based on statistical principles. Generally, statistical QC in the
laboratory applies the principles of hypothesis testing, with varying degrees of rigor, to make
inferences about a measurement system or process. The primary tool for statistical QC is the
control chart.

An important reason to establish statistical QC in the laboratory is to ensure that measurement
uncertainties are properly estimated. The uncertainty estimate that accompanies a measured value
may be misleading unless the measurement process is in a state of statistical control. Statistical
control implies that the distribution of measured results is stable and predictable. It exists when
all the observed variability in the process is the result of random causes that are inherent in the
process. The existence of variability due to �assignable� causes, including instrumental and
procedural failures and human blunders, which are not inherent in the process, implies that the
process is unpredictable and hence �out of control.�

Statistical QC procedures are designed to detect variations due to assignable causes. When such
variability is detected, specific corrective action is required to determine the cause and bring the
measurement process back into a state of statistical control. Laboratory QC procedures should be
definitive enough to detect variations in the measurement system that could have a significant
impact on measurement uncertainties.

Statistical QC also may be used in the laboratory to monitor method performance parameters,
such as chemical yield, to ensure that the measurement system is performing as expected. How-
ever, the need for corrective action in the case of a low yield may not be as urgent as in the case
of a malfunctioning radiation counter, since the latter is much more likely to cause underestima-
tion of measurement uncertainties.

The following sections describe the various types of control charts introduced in Section 18.3.2,
including the X chart,  chart, R chart, and variants of the c chart and u chart for Poisson data.X

18A.2 X Charts

Procedure 18.1, shown below, may be used to determine the central line, control limits, and
warning limits for an X chart. Ideally, the data distribution should be approximately normal,
although the X chart is often used with other types of distributions.
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s ' 1
n & 1 j

n

i'1
(Xi & X)2 (18.6)

c4 '
Γ n

2

Γ n & 1
2

2
n & 1 (18.7)

ν = n ! 1 c4 ν c4 ν c4 ν c4

1 0.79788 11 0.97756 21  0.98817 31  0.99197
2 0.88623 12 0.97941 22  0.98870 32  0.99222
3 0.92132 13 0.98097 23  0.98919 33  0.99245
4 0.93999 14 0.98232 24  0.98964 34  0.99268
5 0.95153 15 0.98348 25  0.99005 35  0.99288
6 0.95937 16 0.98451 26  0.99043 36  0.99308
7 0.96503 17 0.98541 27  0.99079 37  0.99327
8 0.96931 18 0.98621 28  0.99111 38  0.99344
9 0.97266 19 0.98693 29  0.99142 39  0.99361

10 0.97535 20 0.98758 30  0.99170 40  0.99377

TABLE 18A.1 � Bias-correction factor for the experimental standard deviation

In order to use Procedure 18.1, an unbiased estimate of the standard deviation of the measured
values X1, X2, �, Xn is required. Although the experimental variance s2 of the data is an unbiased
estimate of the true variance σ2, taking the square root of s2 generates a bias . The experimental
standard deviation s is given by the equation

If the data are (approximately) normally distributed, s should then be divided by a bias-correction
factor, denoted by c4, which is determined from the number of degrees of freedom, ν = n ! 1, as
shown in Table 18A-1 below. Thus σ is estimated by s / c4. The factor c4 is defined as the ratio of
the expected value of the experimental standard deviation, s, to the true standard deviation, σ,
and can be shown to be equal to

where Γ denotes the gamma function (NBS 1964 ), but it is well approximated by . Forc4 .
4n & 4
4n & 3large n the value of c4 is approximately 1.

An alternative method of estimating the standard deviation is based on the average value of the
moving range (ASTM D6299, ASTM E882). The moving range (MR) is the absolute value of
the difference between consecutive measured values Xi and Xi + 1. If the data are normally distrib-
uted, the expected value of the moving range is
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2σ
π
. 1.128 σ (18.8)

MR '
1

n & 1 j
n&1

i'1
Xi%1 & Xi (18.9)

CL ' X UCL ' X % 3σ̄
LCL ' X & 3σ̄

LWL ' X & 2σ̄
UWL ' X % 2σ̄

which may be estimated by

So, σ is estimated by . The moving-range estimate of σ may be preferred because it isMR / 1.128
less sensitive to outliers in the data. Furthermore, when consecutive values of Xi are correlated, as
for example when a trend is present, the moving-range estimate may produce narrower control
limits, which will tend to lead to earlier corrective action.

Procedure 18.1 (X chart). Determine the central line, control limits, and warning limits for an X
chart based on a series of n independent measurements, which produce the measured values
X1, X2, �, Xn , during a period when the measurement process is in a state of statistical control.
At least 2 measurements must be used. Ideally, at least 20 measurements should be used.

Procedure:
1. Calculate the sum 'n

i'1Xi
2. Calculate the arithmetic mean  using the formulaX

X '
1
n j

n

i'1
Xi

3. Calculate an unbiased estimate  of the standard deviation (e.g., s / c4 or )σ̄ MR / 1.128
4. Define the central line, control limits, and warning limits as follows:

If n is less than 20, a higher rate of false warnings and failures may occur because of the
increased uncertainties of the estimates  and . So, fewer than 20 measured values should beX σ̄
used only if 20 values cannot be obtained; and the limits should be recalculated when 20 values
become available.
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EXAMPLE
Problem: Suppose a series of 20 observations of a parameter yield the following normally
distributed values:

1,118.9   1,110.5   1,118.3   1,091.0   1,099.8   1,113.7   1,114.4   1,075.1   1,112.8   1,103.7
1,120.5   1,104.0   1,125.7   1,117.6   1,097.6   1,099.8   1,102.3   1,119.9   1,107.8   1,114.9

Determine the central line and warning and control limits for future measurements.

Solution:
Step 1 Calculate'Xi ' 22,168.3

Step 2 Calculate the mean X ' 22,168.3 / 20 ' 1,108.415

Step 3 Calculate the experimental standard deviation

s ' 1
20 & 1 j

20

i'1
(Xi & 1108.415)2 ' 12.044

which is based on ν = 19 degrees of freedom. Find c4 = 0.98693 for ν = 19 in
Table 18.1 (or estimate ), and calculatec4 .

4n & 4
4n & 3

'
76
77
' 0.9870

σ̄ ' s
c4

'
12.044
0.98693

' 12.2037

Step 4 Define the central line, control limits, and warning limits as follows:

CL ' 1,108.415
UCL ' 1,108.415 % 3(12.2037) ' 1,145.0
LCL ' 1,108.415 & 3(12.2037) ' 1,071.8

UWL ' 1,108.415 % 2(12.2037) ' 1,132.8
LWL ' 1,108.415 & 2(12.2037) ' 1,084.0

18A.3  ChartsX

When subgroup averages are plotted on a control chart, Steps 1 and 2 of Procedure 18.1 may be
used to determine the arithmetic mean  and the standard deviation  of a prior set of dataX σ̄
X1, X2, �, Xn . If k denotes the size of the subgroup, the central line, control limits, and warning
limits for the subgroup average are calculated using the formulas
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CLX ' X
UCLX ' X % 3σ̄ / k
LCLX ' X & 3σ̄ / k

UWLX ' X % 2σ̄ / k
LWLX ' X & 2σ̄ / k

If n is less than about 20, a higher rate of false warnings and failures may occur because of the
increased uncertainties of the estimates  and . For this reason fewer than 20 measured valuesX σ̄
should be used only if 20 values cannot be obtained.

EXAMPLE
Problem: Use the data from the preceding example to determine warning and control limits
for subgroup averages when the subgroup size is k = 5.

Solution:
Step 1 Calculate  'Xi ' 22,168.3

Step 2 Calculate the mean X ' 22,168.3 / 20 ' 1,108.415

Step 3 Calculate the experimental standard deviation

s ' 1
20 & 1 j

20

i'1
(Xi & 1108.415)2 ' 12.044

which is based on ν = 19 degrees of freedom. Find c4 = 0.98693 for ν = 19 in
Table 18A-1 (or estimate ), and calculatec4 .

4n & 4
4n & 3

'
76
77
' 0.9870

σ̄ ' s
c4

'
12.044
0.98693

' 12.2037

Step 4 Define the central line, control limits, and warning limits as follows:

CLX ' 1,108.415
LCLX ' 1,108.415 & 3(12.2037) / 5 ' 1,092.0
UCLX ' 1,108.415 % 3(12.2037) / 5 ' 1,124.8
LWLX ' 1,108.415 & 2(12.2037) / 5 ' 1,097.5
UWLX ' 1,108.415 % 2(12.2037) / 5 ' 1,119.3
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18A.4 R Charts

The range of a set of values is defined as the difference between the largest value and the
smallest value in the set. When data are collected in subgroups, as described above, the range of
each subgroup may be plotted on a range chart, or R chart, to monitor within-group variability.

The central line for an R chart can be obtained by averaging the observed ranges for a series of
subgroups. Then the upper control limit for the chart can be obtained by multiplying the average
range, , by a factor, denoted by D4, whose value depends on the subgroup size, N. When N $ 7,R
there is another factor, D3, by which  can be multiplied to give the lower control limit. WhenR
N < 7, the R chart has no lower control limit. Values for D3 and D4 are tabulated in Manual on
Presentation of Data and Control Chart Analysis (ASTM MNL7), as well as many other
references.

For example, if an analyst makes a series of duplicate measurements of some quantity (N = 2),
the central line of the R chart equals the average of the measured ranges, ; the upper controlR
limit equals the product of  and the factor D4, whose value is 3.267 for duplicateR
measurements. The steps for calculating the central line and upper control limit when N = 2 are
shown explicitly in Procedure 18.2 below.

Procedure 18.2 (R chart). Determine the central line and control limits for a R chart based on a
series of n independent sets of duplicate measurements, which produce the values R1, R2, �,Rn ,
during a period when the measurement process is in a state of statistical control. 

Procedure:
1. Calculate the range, Ri, of each pair of duplicate measurements, (xi,yi)

 Ri = |xi � yi |

2. Calculate the mean range, , using the formulaR

R '
1
n j

n

i'1
Ri

3. Calculate the upper control limit as UCL = 3.267 R

This approach may also be used for the moving range of a series of individual results.
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EXAMPLE
Problem: Suppose a series of 20 duplicate observations of a parameter yield the following
pairs of values.

(0.501, 0.491)   (0.490, 0.490)   (0.479, 0.482)   (0.520, 0.512)   (0.500, 0.490)
(0.510, 0.488)   (0.505, 0.500)   (0.475, 0.493)   (0.500, 0.515)   (0.498, 0.501)
(0.523, 0.516)   (0.500, 0.512)   (0.513, 0.503)   (0.512, 0.497)   (0.502, 0.500)
(0.506, 0.508)   (0.485, 0.503)   (0.484, 0.487)   (0.512, 0.495)   (0.509, 0.500)

Determine the central line and upper control limit for the range of future pairs of
measurements.

Solution:
Step 1 Calculate the range of each of the 20 pairs:

0.010 0.000 0.003 0.008 0.010
0.022 0.005 0.018 0.015 0.003
0.007 0.012 0.010 0.015 0.002
0.002 0.018 0.003 0.017 0.009

Step 2
Calculate the mean range R '

1
20 j

20

i'1
Ri '

0.189
20

' 0.00945

Step 3 Calculate the upper control limit: UCL = 3.267  = (3.267)(0.00945) = 0.0309R

18A.5 Control Charts for Instrument Response

A radioactive check source should be used to monitor the radiation response/efficiency of every
radiation counting instrument. MARLAP recommends that the activity and count time for the
source be chosen to give no more than 1 percent counting uncertainty (ANSI N42.23). In other
words, at least 10,000 counts should be obtained in each measurement of the source. There may
be cases when placing a high-activity source in a detector is undesirable, so obtaining 10,000
counts is impractical. 

The instrument response may not have a Poisson distribution. In this case, if the check source is
long-lived, an X or  chart based on replicate measurements should be set up. For example, an XX
or  chart is the appropriate radiation response/efficiency chart for a high-purity germaniumX
detector when the area of a specific photopeak is monitored, since the calculated size of the
photopeak may have significant sources of uncertainty in addition to counting uncertainty. An X
or  chart may be used even if the response is truly Poisson, since the Poisson distribution in thisX
case is approximated well by a normal distribution, but slightly better warning and control limits
are obtained by using the unique properties of the Poisson distribution.
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CL '
1
n j

n

i'1
Ni

Standard guidance documents recommend two types of control charts for Poisson data. A �c
chart� typically is used in industrial quality control to monitor the number of manufacturing
defects per item. A �u chart� is used to monitor the number of defects per unit �area of
opportunity,� when the area of opportunity may vary. Thus, the values plotted on a c chart are
counts and those plotted on a u chart are count rates. The same two types of charts may be
adapted for monitoring counts and count rates produced by a radioactive check source. When a u
chart is used, the �area of opportunity� equals the product of the count time and the source decay
factor. In radiation laboratories a variant of the u chart is more often used when the count time
remains fixed but the decay factor changes during the time when the chart is in use.

Before using control limits derived from the Poisson model, one should use Procedure E1,
described in Section 18B.2 of Attachment 18B, to confirm experimentally that the Poisson
approximation is adequate and that any excess variance is relatively small at the expected count
rate. Factors such as source position that may vary during routine QC measurements should be
varied to the same degree during the experiment.

Calculation of warning and control limits using the Poisson model requires only a precise meas-
urement of the source at a time when the instrument is operating properly at the time of
calibration. The precision can be improved either by counting the source longer or by averaging
several measurements. In principle both approaches should provide equally good estimates of the
count rate; however, an advantage of the latter approach is that it can provide the data needed to
detect excess variance (using Procedure E1).

Procedures 18.2 and 18.3, listed below, may be used to determine warning and control limits for
measurements of a radioactive check source when the total count follows the Poisson model.
Procedure 18.2 is for control charts and should be used only when the expected count in each
measurement is the same, for example when the source is long-lived and all count durations are
equal. Procedure 18.3, which implements an alternative to the u chart, may be used in all other
cases.

Procedure 18.2 (Control chart for Poisson efficiency check data with constant mean). A
check source is counted n times on an instrument, producing the measured counts N1, N2, �, Nn .
(Ideally, n is at least 20.) Determine control limits and warning limits for future measurements of
the source count on the same instrument.

Procedure:
1. Estimate the central line by

and the standard deviation by
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s ' CL

�r '
'n

i'1Ni

'n
i'1ti di

CL ' �rTD

s ' CL

NOTE: The estimate s is biased, but the bias is negligible for the large number of counts typically
obtained from a check source.

2. Define the control limits and warning limits (in counts) as follows:

UCL ' CL % 3s
LCL ' CL & 3s

UWL ' CL % 2s
LWL ' CL & 2s

If n is less than 20, a higher rate of false warnings and failures may occur because of the
uncertainty in the estimate of the mean. So, fewer than 20 measurements should be used only if
20 measured values are not available.

Procedure 18.3 (Control chart for Poisson efficiency check data with variable mean). A
check source is counted n times ( ) on an instrument, producing the measured counts N1, N2,n $ 1
�, Nn . (It is assumed that the background level is negligible when compared to the source count
rate.) Let ti denote the duration of the ith measurement and di the decay factor [for example,
exp(!λ(∆t + 0.5ti))]. Determine control limits and warning limits for a future measurement of the
source count on the same instrument when the counting period is T and the decay factor is D.

Procedure:
1. Compute the sums  and .'n

i'1Ni 'n
i'1ti di

2. Estimate the mean decay-corrected count rate by

3. Estimate the central line by

and the standard deviation s by
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4. Define the control limits and warning limits as follows:

UCL ' CL % 3s
LCL ' CL & 3s

UWL ' CL % 2s
LWL ' CL & 2s

If , a higher rate of false warnings and failures may occur because of increased' ti di < 20TD
uncertainty in the estimate of the count rate .�r

EXAMPLE

Problem: A source containing 90Sr and 90Y in equilibrium is used for efficiency checks on a
proportional counter. Near the time of calibration, a series of twenty 600-s measurements are
made. The observed counts are as follows:

12,262   12,561   12,606   12,381   12,394   12,518   12,399   12,556   12,565   12,444
12,432   12,723   12,514   12,389   12,383   12,492   12,521   12,619   12,397   12,562

Assume all twenty measurements are made approximately at time 0, so the ten decay factors di
are all equal to 1. Use Procedure 18.3 to calculate lower and upper control limits for a 600-s
measurement of the same source at a time exactly 1 year later.

Solution:
Step 1 Compute the sums  and .'Ni ' 249,718 ' ti di ' 12,000

Step 2 Calculate �r '
'Ni

' ti di

'
249,718
12,000

' 20.80983

Step 3 The decay time for the final measurement is 1 y = 31,557,600 s. The
corresponding decay factor is D = 0.976055. The count time is T = 600 s. So,
compute

CL ' (20.80983)(600)(0.976055) ' 12,187
and

s ' 12,187 ' 110.39

Step 4 The control limits and warning limits are
UCL ' 12,187 % 3 × 110.39 ' 12,518
LCL ' 12,187 & 3 × 110.39 ' 11,856

UWL ' 12,187 % 2 × 110.39 ' 12,408
LWL ' 12,187 & 2 × 110.39 ' 11,966
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�r '
j

n

i'1

Ni

1 % r0 tidiξ
2

j
n

i'1

1

1 % r0 tidiξ
2

where r0 '
'n

i'1Ni

'n
i'1ti di

CL ' �rTD

s ' CL % ξ2 CL 2

If substantial excess (non-Poisson) variance is present in the data, the simple Poisson charts
described above should not be used. The c chart may be replaced by an X chart or  chart, but aX
new type of chart is needed to replace the u chart. To determine warning and control limits for
this chart, one must determine the relative excess variance of the data ξ2. A value of ξ2 may be
assumed or it may be estimated using procedures described in Attachment 18B. Then Procedure
18.3 may be replaced by the Procedure 18.4, shown below.

Procedure 18.4 (Control chart for Poisson efficiency check data with excess variance). A
check source is counted n times on an instrument, producing the measured counts N1, N2, �, Nn .
Let ti denote the duration of the ith measurement and di the decay factor. Let the data follow an
approximately Poisson distribution with relative excess variance ξ2. Determine control limits and
warning limits for a future measurement of the source count on the same instrument when the
counting period is T and the decay factor is D.

Procedure:
1. Compute the sums  and 'n

i'1Ni 'n
i'1ti di

2. Estimate the mean decay-corrected count rate  by�r

3. Estimate the central line by

and the standard deviation s by

4. Define the control limits and warning limits as follows:

UCL ' CL % 3s
LCL ' CL & 3s

UWL ' CL % 2s
LWL ' CL & 2s
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5 If r denotes the true mean decay-corrected count rate, then under the null hypothesis each measured count rate
Ni / tidi is approximately normal with mean r and variance r / tidi , and the least-squares estimator for r is

. So, the sum  is approximately chi-square with n ! 1 degrees of freedom.�r ''Ni / ' ti di ' (Ni / ti di & �r)2 / (r / ti di)
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χ2 '
1
�r j

n

i'1

Ni

ti di

& �r
2
ti di (18.10)

ATTACHMENT 18B
Statistical Tests for QC Results

18B.1 Introduction

Attachment 18A describes several types of control charts that may be used for statistical quality
control in the laboratory. This attachment describes additional statistical methods that may be
used, where appropriate, to test the performance of measurement results from blank, replicate,
LCS, spikes, CRM, yield-monitor, background, efficiency, calibration, or peak resolution results,
with special emphasis on instrumentation results.

18B.2 Tests for Excess Variance in the Instrument Response

As noted in Chapter 19, the counting uncertainty given by the Poisson approximation does not
describe the total variability in a counting measurement. A number of factors may generate a
small excess component of variance. When a large number of counts are obtained in the meas-
urement, the relative magnitude of the Poisson variance is small; so, the excess component may
dominate.

Regardless of whether replication or the Poisson approximation is used to estimate counting
uncertainties, MARLAP recommends that a series of check source measurements be made on
each instrument periodically to test for excess variance. Procedure E1, which is presented below,
may be used to evaluate the measurement results. To check the stability of the instrument itself,
one should perform the measurements while holding constant any controllable factors, such as
source position, that might increase the variance. To check the variance when such factors are not
constant, one may use Procedure E1 but vary the factors randomly for each measurement.

Assume n measurements of the source produce the counts N1, N2, �, Nn . If the expected count
for each measurement is at least 20, so that the Poisson distribution is approximated by a normal
distribution, and if the average decay-corrected count rate  is determined with adequate�r
precision, then the quantity

where ti and di are the count time and source decay factor for the ith measurement, respectively,
should be distributed approximately as chi-square with n ! 1 degrees of freedom.5 The precision
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If  is determined accurately, the true mean count rate r may be replaced in the formula by its estimated value  to�r �r
obtain the formula that appears in the text. If all the products tidi are equal, they cancel out of the sum, which
becomes , as described by Evans (1955), Goldin (1984), and Knoll (1989).' (Ni & N )2 / N

6 The expected gross count for the ith measurement equals RB ti + r wi , where r is the mean net count rate at time 0.
The expected count is proportional to wi if RB = 0, or if all the decay factors are equal so that ti % wi.
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�r '
'n

i'1Ni

'n
i'1wi

(18.11)

χ2 '
1
�r j

n

i'1

Ni

wi

& �r
2
wi (18.12)

of the estimate  should be adequate for the test as long as the expected count for each measure-�r
ment is at least 20. Since a check source is involved, the expected count is usually much greater
than 20.

Procedure E1. The χ2 (chi-square) analysis can be used to determine whether a series of
measurements of a check source provide evidence of variance in excess of the Poisson counting
variance. Let Ni denote the count observed in the ith measurement. Let wi = tidi, where ti denotes
the count time and di denotes the source decay factor (if relevant). If all the values wi are equal,
one may use wi = 1 instead for all i. It is assumed either that the background count rate is
negligible or that the decay factors are all nearly equal, so that the expected count in each
measurement is proportional to wi .6 The procedure tests the null hypothesis that the total
measurement variance is the Poisson counting variance.

Procedure:
1. Choose the significance level α
2. Calculate the sums  and 'n

i'1Ni 'n
i'1wi

3. Estimate the mean decay-corrected count rate by

4. Calculate the chi-square statistic as follows:

5. Determine the quantile  (see Table G.3 in Appendix G). Reject the nullχ2
1&α(n & 1)

hypothesis if and only if the calculated value of χ2 is greater than . In this caseχ2
1&α(n & 1)

conclude that the variance is greater than predicted by the Poisson model.
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ξ2
D '

1
µ

χ2
1&α(n & 1)

χ2
β(n & 1)

& 1 (18.13)

EXAMPLE

Problem: A long-lived source is counted n = 20 times in a gross radiation detector and the
duration of each measurement is 300 s. The following total counts are measured:

11,189   11,105   11,183   10,910   10,998   11,137   11,144   10,751   11,128   11,037
11,205   11,040   11,257   11,176   10,976   10,998   11,023   11,199   11,078   11,149

Are these data consistent with the assumption that the measurement variance is no greater than
predicted by the Poisson model? Use 5 percent as the significance level.

Solution:
Step 1 The significance level is specified to be α ' 0.05

Step 2 Since the source is long-lived and all the count times are equal, let wi = 1 for
each i. Calculate  and 'Ni ' 221,683 'wi ' 20

Step 3 Calculate the mean count rate �r ' 221,683 / 20 ' 11,084.15

Step 4 Calculate the chi-square statistic

χ2 '
1
�r j

n

i'1

Ni

wi

& �r
2
wi '

1
11,084.15 j

20

i'1
(Ni & 11,084.15)2 ' 24.87

Step 5 The number of degrees of freedom is . According to Table G.3, the20 & 1 ' 19
0.95-quantile for a chi-square distribution with 19 degrees of freedom is 30.14.
Since , do not reject the null hypothesis. The data are consistent24.87 # 30.14
with the assumption of Poisson counting statistics at the 5 percent significance
level.

A two-sided version of Procedure E1 may also be used to test whether the measurement variance
is either greater than or less than predicted by the Poisson model. Step 5 must be changed so that
the null hypothesis is rejected if the value of the test statistic χ2 does not lie between the two
quantiles  and .χ2

α /2(n & 1) χ2
1&α /2(n & 1)

A chi-square test may require many measurements or long count times to detect a small excess
variance component. When all measurements have the same expected count µ, the detection limit
for the relative excess variance, or its minimum detectable value, is equal to
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ξ2
D '

1
10,816

χ2
0.95(19)

χ2
0.05(19)

& 1 '
1

10,816
30.14
10.12

& 1 '
1.978
10,816

' 1.829×10&4

F(n) ' n
χ2

1&α(n & 1)

χ2
β(n & 1)

& 1 (18.14)

where β is the specified probability of a type II error (failure to detect) (Currie,1972). Note that
since  represents a relative variance, its square root ξD represents a relative standard deviation.ξ2

D

EXAMPLE: A long-lived source is counted 20 times, and each measurement has the same
duration. The average of the measured counts is 10,816. If , the minimumα ' β ' 0.05
detectable value of the relative excess variance is estimated by

which corresponds to a relative standard deviation , or about 1.35ξD ' 1.829×10&4 ' 0.01352
percent.

If (1) the relative excess variance in a measurement is not affected by count time, (2) a fixed total
count time is available, and (3) all measurements have the same expected count (e.g., when all
count times are equal and the source is long-lived), then it is possible to determine the number of
measurements that minimizes  (Currie, 1972). The optimal number is the number n thatξ2

D
minimizes the quantity

The solution may be found by computing  for n = 2, 3, 4, �, until the computed valueF(n)
begins to increase. When α = β = 0.05, the optimal number of measurements is n = 15, although
the improvement as n increases from 6 to 15 is slight. If n is increased further, the detection limit

 worsens unless the total count time is also increased.ξ2
D

A chi-square test may also be used to test whether the total source measurement variance consists
of a Poisson component and a specified excess component (Currie 1972). Procedure E2,
described below, implements this test. If the specified component is zero, Procedure E2 is
equivalent to E1.

Procedure E2. Determine whether a series of measurements of a check source provide evidence
that the measurement variance is greater than the Poisson component plus a specified excess
component. (Refer to the notation used in Procedure E1.) Let ξ2 denote the value of the relative
excess variance under the null hypothesis H0.
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7 In Currie (1972), the variance of Ni is estimated by Ni + . The estimated variance used here is calculated byξ2 N 2
i

pooling the counting data to reduce any small bias caused by the correlation between Ni and Ni + .ξ2 N 2
i

8 Newton�s method, which converges more rapidly, can also be used, but its use is more practical if one replaces �r
by r0 in the denominator of each term of Equation 18.16.
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r0 '
'n

i'1Ni

'n
i'1wi

and �r 'j
n

i'1

Ni

1 % r0 wiξ
2 j

n

i'1

wi

1 % r0 wiξ
2 (18.15)

χ2 'j
n

i'1

(Ni / wi & �r)2

�r / wi % �r 2ξ2 (18.16)

Procedure:
1. Choose the significance level α.

2. Calculate the sums  and , where N1, N2, �, Nn are the measured values.'n
i'1Ni 'n

i'1wi

3. Estimate the mean decay-corrected count rate  in two steps by�r

(If  or , then .)w1 ' w2 ' @@@ ' wn ξ2 ' 0 �r ' r0

4. Calculate the chi-square statistic as follows:7

5. Determine the quantile  (see Table G.3). Reject the null hypothesis if and onlyχ2
1&α(n & 1)

if the calculated value of χ2 is greater than . In this case conclude that theχ2
1&α(n & 1)

relative excess variance is greater than ξ2.

Procedure E2, like E1, can easily be converted to a two-sided test by changing Step 5.

The excess component may be estimated by solving Equations 18.15 and 18.16 for the value of ξ
that gives χ2 = n ! 1. An iterative computer algorithm, such as bisection, which repeatedly tries
values of ξ and computes χ2 can be used.8 An approximate confidence interval for the relative
excess variance may similarly be found by solving for values of ξ which give ,χ2 ' χ2

(1±γ) /2(n & 1)
where γ is the desired confidence coefficient (Currie, 1972).

If w1 = w2 = @ @ @ = wn , the iterative algorithm is unnecessary. In this case the value of ξ may be
estimated directly using the formula
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ξ2 '
1

N 2

1
n & 1 j

n

i'1
(Ni & N)2 & N (18.17)

ξ2
lower '

1
N 2

1

χ2
(1%γ) /2(n & 1)

j
n

i'1
(Ni & N)2 & N (18.18)

ξ2
upper '

1
N 2

1

χ2
(1&γ) /2(n & 1)

j
n

i'1
(Ni & N)2 & N (18.19)

ξ ' 1
14,967.6

1
20 & 1 j

20

i'1
(Ni & 14,967.6)2 & 14,967.6 ' 0.014463

or by ξ = 0 if the preceding formula gives a negative result. Similarly, the approximate lower
confidence limit is given by the formula

and the approximate upper confidence limit is given by

EXAMPLE

Problem: A long-lived efficiency check source is counted once a day for 20 days, and each
measurement has the same duration. Suppose the measured counts (Ni) are:

14,454   15,140   15,242   14,728   14,756   15,040   14,768   15,128   15,150   14,872
14,845   15,511   15,032   14,746   14,731   14,982   15,047   15,272   14,765   15,143

Use these data to estimate ξ and determine a 95 percent two-sided confidence interval for its
value.

Solution: Since the source is long-lived and all the measurements have the same duration,
w1 = w2 = @ @ @ = w20 and Equations 18.17 through 18.19 may be used. So, calculate

 and . Then the value of ξ is estimated as'Ni ' 299,352 N ' 299,352 / 20 ' 14,967.6
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ξlower '
1
N

1

χ2
0.975(20 & 1)

j
20

i'1
(Ni & N)2 & N

'
1

14,967.6
1

32.852 j
20

i'1
(Ni & 14,967.6)2 & 14,967.6

' 0.0096334

ξupper '
1
N

1

χ2
0.025(20 & 1)

j
20

i'1
(Ni & N)2 & N

'
1

14,967.6
1

8.9065 j
20

i'1
(Ni & 14,967.6)2 & 14,967.6

' 0.022846

u(N) ' N % ξ2 N 2 ' 1,000 % 10&4106 ' 1,100 . 1.05 N

u(N) ' 105 % 10&41010 ' 1,100,000 . 1.05(ξN)

The 95 percent confidence limits are calculated as follows:

For most practical purposes the excess variance may be considered negligible in a counting
measurement if the total count N is less than 1 / 10ξ2, since, in this case, the excess variance
increases the standard deviation of the measured count by less then 5 percent. Similarly, the
counting variance may be considered negligible if N $ 10 / ξ2.

EXAMPLE: Suppose  counts observed in a measurement and ξ has been estimatedN ' 1,000
to be 0.01. Then . The standard uncertainty of N is evaluated asN ' 1 / 10ξ2

If , then  andN ' 100,000 N ' 10 / ξ2

So,  for , and  for .u(N) . N N # 1,000 u(N) . ξN N $ 100,000
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�r '
'n

i'1Ni

'n
i'1ti

(18.20)

18B.3 Instrument Background Measurements

This section presents statistical tests related to measurements of instrument background levels.
The tests are intended for single-channel detectors but may be applied to multichannel systems if
wide spectral regions are integrated. Tests are described for comparing background levels to
preset limits, for detecting changes in background levels between measurements, and for
detecting the presence of variability in excess of that predicted by the Poisson model.

Each of the statistical tests in this section includes different instructions depending on whether
the number of background counts in a measurement is at least 20. The reason for this is that
when the expected number of counts is high enough, the Poisson distribution can be approxi-
mated by a normal distribution, which simplifies the test procedure. For more information about
the Poisson distribution and the normal approximation, see Section 19A.2.9, �Poisson
Distributions.�

18B.3.1 Detection of Background Variability

The chi-square test (Procedure E1) used to detect excess variance in measurements of a check
source may be adapted for background measurements. Procedure B1 implements a chi-square test
for backgrounds. This test is one-sided, although Step 6 can be modified to implement a two-
sided test.

Procedure B1. Determine whether a series of measurements of an instrument�s background
provide evidence of variance in excess of the Poisson counting variance. Let Ni denote the count
observed in the ith measurement, and let ti denote the count time.

Procedure:
1. Determine the significance level α
2. Calculate the sums  and 'n

i'1Ni 'n
i'1ti

3. Estimate the mean background count rate by

4. Let  be the smallest value of ti . If , go to Step 5. Otherwise, discard alltmin �r tmin $ 20
measured values Ni for which . If possible, restart the test at Step 2; if not, stop.�r ti < 20

5. Calculate the chi-square statistic as follows:
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χ2 '
1
�r j

n

i'1

Ni

ti

& �r
2
ti (18.21)

6. Determine the quantile  (see Table G.3 in Appendix G). Reject the nullχ2
1&α(n & 1)

hypothesis if and only if the calculated value of χ2 is greater than . In this case,χ2
1&α(n & 1)

conclude that the instrument background does not follow the Poisson model.

EXAMPLE

Problem: Twenty overnight background measurements are performed on a proportional
counter. The duration of each measurement is 60,000 s, and the following alpha counts are
measured:

14    23    23    25    28    22    19    26    20    27
30    21    34    32    24    27    25    19    19    25

Are these data consistent with the assumption that the measurement variance is attributable to
Poisson counting statistics? Use 5 percent as the significance level.

Solution:
Step 1 The significance level is specified to be α = 0.05

Step 2 Calculate Ni = 483 and ti = 20 × 60,000 = 1,200,000' '
Step 3 Calculate the mean count rate �r ' 483/1,200,000 ' 0.0004025

Step 4 Since , . Since , go to Step 5tmin ' 60,000 �rtmin ' 24.15 24.15 $ 20

Step 5 Calculate the chi-square statistic

χ2 '
1
�r j

n

i'1

Ni

ti

& �r
2
ti '

1
0.0004025 j

20

i'1

Ni

60,000
& 0.0004025

2
60,000 ' 18.49

Step 6 The number of degrees of freedom is 20 ! 1 = 19. According to Table G.3, the
0.95-quantile for a chi-square distribution with 19 degrees of freedom is 30.14.
Since 18.49 # 30.14, do not reject the null hypothesis. The data are consistent with
the Poisson model.

All the background tests described below are based on the assumption of Poisson counting
statistics. If Procedure B1 indicates the Poisson assumption is invalid, each test requires
modification or replacement. In most cases, unless the observed background counts are very low,
standard statistical tests for normally distributed data may be used instead (e.g., NBS, 1963;
EPA, 2000).
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Z '
0.5 % NB & rt

rt
(18.22)

18B.3.2 Comparing a Single Observation to Preset Limits

High background levels on an instrument degrade detection capabilities and may indicate the
presence of contamination. Unusually low levels on certain types of instruments may indicate
instrument failure. When these issues are of concern, one or both of the two statistical tests
described below may be performed to determine whether the true background level is outside of
its desired range.

The result of the background measurement in counts is assumed to have a Poisson distribution. In
both of the following tests, t denotes the count time, and r denotes the preset lower or upper limit
for the true mean background count rate RB . Given an observed count NB , Procedure B2
determines whether RB > r and B3 determines whether RB < r.

Procedure B2 should be used when r is an upper limit and B3 should be used when r is a lower
limit. Thus, the background level is assumed to be within its acceptable limits unless there is
statistical evidence to the contrary. The alternative approach, which changes the burden of proof,
may be used if rt is large enough.

If rt is extremely large (e.g., if rt $ 2,500), there is probably no justification for a statistical test.
Instead, the observed count rate may be compared directly to r.

Procedure B2. Determine whether the mean background count rate RB  is greater than r. Test the
null hypothesis H0: RB # r against the alternative hypothesis H1: RB > r.

Procedure:
1. Choose the significance level α.

2. If NB # rt, conclude that there is insufficient evidence to reject the null hypothesis, and
stop. Otherwise, if rt < 20, go to Step 6. If rt $ 20, go to Step 3.

3. Calculate

4. Determine z1!α , the -quantile of the standard normal distribution (see Table G.1 in(1&α)
Appendix G).

5. Reject the null hypothesis if and only if Z > z1!α . Stop.

NOTE: If the background count time t is always the same, a fixed upper control limit may be
calculated using the formula
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UCL ' round rt % z1&α rt

where round denotes the function that rounds its argument to the nearest integer. Then Steps
3�5 are effectively performed by comparing the observed value NB to UCL.

6. Determine , the α-quantile of the chi-square distribution with 2NB degrees ofχ2
α(2NB)

freedom (see Table G.3 in Appendix G), and calculate .Q ' 0.5 χ2
α(2NB)

7. Reject the null hypothesis if and only if Q > rt.

EXAMPLE

Problem: To ensure adequate detection capabilities, a laboratory establishes an upper limit of
0.02 cps for beta backgrounds on a proportional counter. A 6,000-s background measurement
is performed, during which 125 beta counts are observed. Determine whether this
measurement result gives 95 percent confidence that the background is greater than 0.02 cps.

Solution: The values of the variables are NB = 125, t = 6,000 and r = 0.02

Step 1 The significance level α is 1 ! 0.95 = 0.05

Step 2 Since NB $ rt = 120 and rt $ 20, go to Step 3

Step 3 Calculate Z ' (0.5 % 125 & 120) / 120 ' 0.5021

Step 4 Table G.1 shows that z0.95 = 1.645

Step 5 Since 0.5021 # 1.645, do not reject the null hypothesis. There is insufficient
evidence to conclude that the beta background exceeds 0.02 cps

EXAMPLE

Problem: The same laboratory establishes an upper limit of 0.002 cps for alpha backgrounds
on the same counter. A 6,000-s background measurement is performed, during which 19 alpha
counts are observed. Determine whether this measurement result gives 95 percent confidence
that the background is greater than 0.002 cps.

Solution: The values of the variables are NB = 19, t = 6,000 and r = 0.002

Step 1 The significance level α is 1 ! 0.95 = 0.05

Step 2 Since NB $ rt = 12 and rt < 20, go to Step 6
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Z '
0.5 % NB & rt

rt
(18.23)

Step 6 Table G.3 shows that . So, Q = 0.5 @ 24.88 = 12.44χ2
0.05(38) ' 24.88

Step 7 Since 12.44 > 12, reject the null hypothesis. The data give 95 percent confidence
that the alpha background is greater than 0.002 cps.

Procedure B3. Determine whether the mean background count rate RB is less than r. Test the
null hypothesis H0: RB $ r against the alternative hypothesis H1: RB < r.

Procedure:
1. Choose the significance level α.

2. If NB $ rt, conclude that there is insufficient evidence to reject the null hypothesis, and
stop. Otherwise, if rt < 20, go to Step 6. If rt $ 20, go to Step 3.

3. Calculate

4. Determine z1!α , the -quantile of the standard normal distribution (see Table G.1 in(1 & α)
Appendix G).

5. Reject the null hypothesis if and only if Z < !z1!α . Stop.

NOTE: If the background count time t is always the same, a lower control limit may be calculated
using the formula

LCL ' round rt & z1&α rt .

Steps 3�5 are then effectively performed by comparing NB to LCL.

6. Determine , the -quantile of the chi-square distribution with 2NB + 2χ2
1&α(2NB % 2) (1 & α)

degrees of freedom (see Table G.3), and calculate .Q ' 0.5 χ2
1&α(2NB % 2)

7. Reject the null hypothesis if and only if Q < rt.
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EXAMPLE

Problem: A laboratory establishes a lower limit of 0.01 cps for beta backgrounds on a
proportional counter. A 6,000-s background measurement is performed, during which 50 beta
counts are observed. Determine whether this measurement result gives 95 percent confidence
that the background is less than 0.01 cps.

Solution: The values of the variables are NB = 50, t = 6,000 and r = 0.01

Step 1 The significance level α is 1 ! 0.95 = 0.05

Step 2 Since NB # rt = 60 and rt $ 20, go to Step 3

Step 3 Calculate Z ' (0.5 % 50 & 60) / 60 ' &1.226

Step 4 Table G.1 shows that z0.95 = 1.645

Step 5 Since !1.226 $ !1.645, do not reject the null hypothesis.

18B.3.3 Comparing the Results of Consecutive Measurements

If consecutive measurements of the background level on an instrument give significantly differ-
ent values, one should be concerned about the accuracy of any laboratory sample measurements
made between the two background measurements. If the background has increased, the labora-
tory sample activities may have been overestimated. If the background has decreased, the activi-
ties may have been underestimated. For very low background applications, when the number of
observed counts per measurement approaches zero (as encountered in alpha spectrometry), the
tests for comparing statistical equivalence of paired backgrounds can be confounded. In these
cases, it may be better to examine populations of blanks with N $ 20.

Let N1 and N2 denote the counts observed in two independent background measurements on the
same instrument, and assume they represent Poisson distributions with unknown means. Let t1
and t2 denote the corresponding count times. The following two procedures may be used to
determine whether the difference between the two observed values is significantly larger than
would be expected on the basis of the Poisson model. Procedure B4 determines whether the
second value is significantly greater than the first. Procedure B5 determines whether there is a
significant difference between the two values.

Procedure B4. Determine whether the second mean background count rate R2 is higher than the
first R1. Test the null hypothesis H0: R1 $ R2 against the alternative hypothesis H1: R1 < R2.
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Z '
N2

t2

&
N1

t1

N1 % N2

t1 t2

(18.24)

S ' j
N1

k ' 0

N1 % N2

k
p kq N1 % N2 & k (18.25)

S ' 1 & j
N1%N2

k ' N1%1

N1 % N2

k
p kq N1 % N2 & k (18.26)

Procedure:
1. Choose the significance level α.

2. If N1 / t1 $ N2 / t2, conclude that there is insufficient evidence to reject the null hypothesis,
and stop. Otherwise, if N1 $ 20 and N2 $ 20, go to Step 3. If N1 < 20 or N2 < 20, go to
Step 6.

3. Calculate

4. Determine z1!α , the -quantile of the standard normal distribution.(1 & α)

5. Reject the null hypothesis if and only if Z > z1!α . Stop.

6. Let p = t1 / (t1 + t2) and q = t2 / (t1 + t2). If N1 < N2, calculate

If N1 $ N2, calculate S more efficiently using the formula

NOTE: For any nonnegative integers n and k, the notation  denotes a binomial coefficient, usuallyn
k

read �n choose k,� which is the number of possible combinations of n objects chosen k at a time. For
example, , , , and . In general, for 0 # k # n, the value of  equals4

1
' 4 4

2
' 6 4

3
' 4 4

4
' 1 n

k

, where the symbol ! denotes the �factorial� operator. The number of combinations of nn!
k!(n&k)!

objects chosen k at a time is also denoted sometimes by nCk.

7. Reject the null hypothesis if and only if S # α.
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S ' 1 &
18
16

10
11

16 1
11

2
%

18
17

10
11

17 1
11

1
%

18
18

10
11

18 1
11

0

' 1 & 0.7788 ' 0.2212 .

EXAMPLE

Problem: A 60,000-s background measurement is performed on an alpha spectrometer and
15 total counts are observed in a particular region of interest. After a test source is counted, a
6,000-s background measurement is performed and 3 counts are observed. Assuming Poisson
counting statistics, is the second measured count rate (0.0005 cps) significantly higher than the
first (0.00025 cps) at the 5 percent significance level?

Solution: The variables are N1 = 15, t1 = 60,000, N2 = 3, and t2 = 6,000

Step 1 The significance level α is specified to be 0.05

Step 2 Since N1 / t1 = 0.00025 < 0.0005 = N2 / t2, N1 < 20, and N2 < 20, go to Step 6

Step 6  and . Since , calculate S using the secondp '
60,000
66,000

'
10
11

q '
6,000

66,000
'

1
11

N1 $ N2

formula.

Step 7 Since S $ α, there is not enough evidence to reject the null hypothesis. The second
measured count rate is not significantly higher than the first.

Procedure B5. Determine whether the mean background count rates are different. Test the null
hypothesis H0: R1 = R2 against the alternative hypothesis H1: R1 … R2.

Procedure:
1. Choose the significance level α.

2. If N1 / t1 = N2 / t2, conclude that there is insufficient evidence to reject the null hypothesis,
and stop. Otherwise, if N1 < 20 or N2 < 20, go to Step 6. If N1 $ 20 and N2 $ 20, go to
Step 3.

3. Calculate Z using Equation 18.24.

4. Determine , the -quantile of the standard normal distribution.z1&α /2 (1 & α / 2)

5. Reject the null hypothesis if and only if . Stop.Z > z1&α /2
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6. If N1 / t1 < N2 / t2, use Procedure B4 with significance level α / 2 to determine whether
R1 < R2. If N1 / t1 > N2 / t2, use Procedure B4 with significance level α / 2 and with the
observations reversed to determine whether R2 < R1.

18B.4 Negative Activities

When the measured count rate for a test source is less than that of the corresponding instrument
background, giving a negative value for the source activity, Procedure B4 may be used to deter-
mine whether the difference between the two count rates is significantly more than should be
expected on the basis of the Poisson model and the assumption that the source is a blank. (Let N1
and t1 be the source count and counting time and let N2 and t2 be the background count and count-
ing time.). If a significant difference is found, it may indicate that the background measurement
was biased, the true background is variable or non-Poisson, or the instrument is unstable. As
background counts approach zero, the assumption of Poisson statistics begins to fail. This mean-
centered approach may lead the analyst to an inappropriate conclusion. In these cases, an
examination of a larger population of blanks is more appropriate.
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1 Planners and decisionmakers must also consider the variability of the analyte in sampled populations, as discussed
in Appendix C; however, the focus of this chapter is on the uncertainty of measuring the analyte in each laboratory
sample.
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19  MEASUREMENT UNCERTAINTY

19.1 Overview

This chapter discusses the evaluation and reporting of measurement uncertainty. Laboratory
measurements always involve uncertainty, which must be considered when analytical results are
used as part of a basis for making decisions.1 Every measured result reported by a laboratory
should be accompanied by an explicit uncertainty estimate. One purpose of this chapter is to give
users of radioanalytical data an understanding of the causes of measurement uncertainty and of
the meaning of uncertainty statements in laboratory reports. The chapter also describes proce-
dures which laboratory personnel use to estimate uncertainties.

This chapter has more than one intended audience. Not all readers are expected to have the
mathematical skills necessary to read and completely understand the entire chapter. For this
reason the material is arranged so that general information is presented first and the more tech-
nical information, which is intended primarily for laboratory personnel with the required mathe-
matical skills, is presented last. The general discussion in Sections 19.2 and 19.3 requires little
previous knowledge of statistical metrology on the part of the reader and involves no mathe-
matical formulas; however, if the reader is unfamiliar with the fundamental concepts and terms
of probability and statistics, he or she should read Attachment 19A before starting Section 19.3.
The technical discussion in Sections 19.4 and 19.5 requires an understanding of basic algebra and
at least some familiarity with the fundamental concepts of probability and statistics. The discus-
sion of uncertainty propagation requires
knowledge of differential calculus for a com-
plete understanding. Attachments 19C�E are
intended for technical specialists.
 
The major recommendations of the chapter
are summarized in Section 19.3.9.

19.2 The Need for Uncertainty
Evaluation

Radiochemical laboratories have long recog-
nized the need to provide uncertainties with
their results. Almost from the beginning, lab-
oratories have provided the counting uncer-
tainty for each result, because it is usually
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easy to evaluate (see Sections 19.3.5 and 19.5.2). However, the counting uncertainty is only one
component of the total measurement uncertainty. Over the years it has been recommended
repeatedly that laboratories perform good evaluations of the total uncertainty of each measure-
ment. In 1980 the Environmental Protection Agency published a report entitled �Upgrading
Environmental Radiation Data,� which was produced by an ad hoc committee of the Health
Physics Society. Two of the recommendations of this report were stated as follows (EPA 1980).

Every reported measurement result (x) should include an estimate of its overall
uncertainty (ux) which is based on as nearly a complete an assessment as possible.

The uncertainty assessment should include every conceivable or likely source of
inaccuracy in the result.

More recently ANSI N42.23, American National Standard Measurement and Associated Instru-
ment Quality Assurance for Radioassay Laboratories, recommended that service laboratories
report both the counting uncertainty and the total propagated uncertainty. ISO/IEC 17025,
General Requirements for the Competence of Testing and Calibration Laboratories, which was
released as a standard in 1999, requires calibration and testing laboratories to �have and apply�
procedures for estimating measurement uncertainties (ISO/IEC, 1999). The National Environ-
mental Laboratory Accreditation Conference (NELAC) has also published a standard on labora-
tory quality systems, which requires a radiochemical testing laboratory to report with each result
its associated measurement uncertainty (NELAC, 2002, ch. 5).

Note that the concept of traceability (see Chapter 18) is defined in terms of uncertainty. Trace-
ability is defined as the �property of the result of a measurement or the value of a standard
whereby it can be related to stated references, usually national or international standards, through
an unbroken chain of comparisons all having stated uncertainties� (ISO, 1993a). Thus, a labora-
tory cannot realistically claim that its measurement results are �traceable� to a standard unless
there exists a chain of comparisons, each with an associated uncertainty, connecting its results to
that standard.

This chapter considers only measurement uncertainty. The claim is often made that field samp-
ling uncertainties are so large that they dwarf laboratory measurement uncertainties. Although the
claim may be true in some cases, MARLAP rejects this argument as an excuse for failing to per-
form a full evaluation of the measurement uncertainty. A realistic estimate of the measurement
uncertainty is one of the most useful quality indicators for a result.

Although the need for good uncertainty evaluation has long been recognized, not all laboratories
have been able to implement the recommendations fully. A certain level of mathematical sophis-
tication is required. Implementation requires, at a minimum, a mastery of basic algebra, some
knowledge of differential calculus and a grasp of many concepts of probability and statistics; but
even more fundamentally it requires an understanding of the various aspects of the measurement
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process in the laboratory, including chemical and physical principles as well as practical consid-
erations. Implementation at a laboratory is certainly easier if there are those who understand both
the measurement process and the mathematical methods, but in some cases it may be necessary
to use a team approach that brings together all the required expertise.

Today there is software that performs the mathematical operations for uncertainty evaluation and
propagation, and some of the difficulties of implementation may disappear as such software
becomes more widely available. Nevertheless analysts and technicians will still need to under-
stand the concepts of measurement uncertainty and how they apply to particular measurement
processes in the laboratory.

19.3 Evaluating and Expressing Measurement Uncertainty

The methods, terms, and symbols recommended by MARLAP for evaluating and expressing
measurement uncertainty are described in the Guide to the Expression of Uncertainty in Meas-
urement, hereafter abbreviated as GUM, which was published by the International Organization
for Standardization (ISO) in 1993 and corrected and reprinted in 1995 (ISO, 1995). The methods
presented in the GUM are summarized in this chapter and adapted for application to radiochem-
istry.

The terminology and notation used by the GUM and this chapter may be unfamiliar or confusing
to readers who are familiar with statistics but not metrology. Metrology (the science of measure-
ment) uses the language and methods of probability and statistics, but adds to them its own
terms, symbols, and approximation methods.

19.3.1  Measurement, Error, and Uncertainty

The result of a measurement is generally used to estimate some particular quantity called the
measurand. For example, the measurand for a radioactivity measurement might be the specific
activity of 238Pu in a laboratory sample. The difference between the measured result and the
actual value of the measurand is the error of the measurement. Both the measured result and the
error may vary with each repetition of the measurement, while the value of the measurand (the
true value) remains fixed.

Measurement error may be caused by random effects and systematic effects in the measurement
process. Random effects cause the measured result to vary randomly when the measurement is
repeated. Systematic effects cause the result to tend to differ from the value of the measurand by
a constant absolute or relative amount, or to vary in a nonrandom manner. Generally, both ran-
dom and systematic effects are present in a measurement process.
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2 In some performance-testing programs, the term �bias� is used to mean the difference between a laboratory�s
measured result and the target value. For example, one of the two definitions of bias stated in ANSI N13.30, �Per-
formance Criteria for Radiobioassay,� is the �deviation of a single measured value of a random variable from a cor-
responding expected value.� MARLAP notes that such a deviation, even if it is large, may not give a reliable indica-
tion of bias in the statistical or metrological sense.
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A measurement error produced by a random effect is a random error, and an error produced by a
systematic effect is a systematic error. A systematic error is often called a �bias� (see also
Attachment 19A).2 The distinction between random and systematic errors depends on the specifi-
cation of the measurement process, since a random error in one measurement process may appear
systematic in another. For example, a random error in the measurement of the specific activity of
a radioactive standard solution may be systematic from the point of view of a laboratory that pur-
chases the solution and uses it to calibrate instruments for other measurements.

Measurement errors may also be spurious errors, such as those caused by human blunders and
instrument malfunctions. Blunders and other spurious errors are not taken into account in the
statistical evaluation of measurement uncertainty. They should be avoided, if possible, by the use
of good laboratory practices, or at least detected and corrected by appropriate quality assurance
and quality control.

The error of a measurement is unknowable, because one cannot know the error without knowing
the true value of the quantity being measured (the measurand). For this reason, the error is pri-
marily a theoretical concept. However, the uncertainty of a measurement is a concept with prac-
tical uses. According to the GUM, the term �uncertainty of measurement� denotes a �parameter,
associated with the result of a measurement, that characterizes the dispersion of the values that
could reasonably be attributed to the measurand.� The uncertainty of a measured value thus gives
a bound for the likely size of the measurement error. In practice, there is seldom a need to refer to
the error of a measurement, but an uncertainty should be stated for every measured result.

19.3.2  The Measurement Process

The International Union of Pure and Applied Chemistry (IUPAC) defines a (chemical) measure-
ment process as an �analytical method of defined structure that has been brought into a state of
statistical control, such that its imprecision and bias are fixed, given the measurement condi-
tions� (IUPAC, 1995). The requirement of statistical control is an important aspect of the defini-
tion, since it is crucial to the determination of realistic uncertainty estimates. Statistical control
implies that the measurement process is stable with a predictable distribution of results, and is a
prerequisite for uncertainty evaluation and for the determination of process performance charac-
teristics, such as the detection and quantification capabilities (see Chapter 20).

The laboratory ensures that the measurement process remains in a state of statistical control by
following appropriate quality control (QC) procedures, as described in Chapter 18. Procedures
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3 Because of the unavoidable ambiguity in the specification of the measurand, one should, to be precise, speak of �a
value� of the measurand and not �the value.�

4 In accordance with the GUM, an uppercase letter is used here to denote both the input or output quantity and the
random variable associated with its measurement, while a lowercase letter is used for the estimated value of the
quantity. For simplicity, in most of the later examples this convention will be abandoned. Only one symbol will be
used for the quantity, the random variable, and the estimated value of the quantity.
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for statistical QC can be designed not only to ensure process stability but also to obtain data for
use in the evaluation of measurement uncertainties.

The first step in defining a measurement process is to define the measurand clearly. The specifi-
cation of the measurand is always ambiguous to some extent, but it should be as clear as neces-
sary for the intended purpose of the data.3 For example, when measuring the activity of a
radionuclide in a laboratory sample, it is generally necessary to specify the activity as of a certain
date and time and whether the entire sample or only a certain fraction is of interest. For very
accurate work, it may be necessary to specify other conditions, such as temperature (e.g., activity
concentration at 20 EC).

Often the measurand is not measured directly but instead an estimate is calculated from the meas-
ured values of other input quantities, which have a known mathematical relationship to the meas-
urand. For example, input quantities in a measurement of radioactivity may include the gross
count, blank or background count, counting efficiency and test portion size. So, another
important aspect of the measurement process is the mathematical model for the relationship
between the output quantity, Y, and measurable input quantities, X1,X2,�,XN, on which its value
depends. The relationship will be expressed here abstractly as Y = f(X1,X2,�,XN), but in practice
the actual relationship may be expressed using a set of equations. What is important about a
mathematical model is that it describes exactly how the value of the output quantity depends on
the values of the input quantities.

The mathematical model for a radioactivity measurement often has the general form

Y �� (Gross Instrument Signal) � (Blank Signal % Estimated Interferences)
Sensitivity

Each of the quantities shown here may actually be a more complicated expression. For example,
the sensitivity (the ratio of the net signal to the measurand) may be the product of factors such as
the mass of the test portion, the chemical yield (recovery) and the instrument counting efficiency.

When the measurement is performed, a value xi is estimated for each input quantity, Xi, and an
estimated value, y, of the measurand is calculated using the relationship y = f(x1,x2,�,xN).4 Since
there is an uncertainty in each input estimate, xi , there is also an uncertainty in the output esti-
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mate, y. In order to obtain a complete estimate of the uncertainty of y, all input quantities that
could have a potentially significant effect on y should be included in the model.

19.3.3  Analysis of Measurement Uncertainty

Determining the uncertainty of the output estimate y requires that the uncertainties of all the input
estimates xi be determined and expressed in comparable forms. The uncertainty of xi is expressed
in the form of an estimated standard deviation, called the standard uncertainty and denoted by
u(xi), or in the form of an estimated variance, denoted by u2(xi), which is the square of the stan-
dard uncertainty. A standard uncertainty is sometimes informally called a �one-sigma� uncer-
tainty. The ratio u(xi) /  is called the relative standard uncertainty of xi, which may be denoted|xi |
by ur(xi). If the input estimates are potentially correlated, covariance estimates u(xi,xj) must also
be determined. The covariance u(xi,xj) is often recorded and presented in the form of an
estimated correlation coefficient, r(xi,xj), which is defined as the quotient u(xi,xj) / u(xi)u(xj). The
standard uncertainties and estimated covariances are combined to obtain the combined standard
uncertainty of y, denoted by uc(y). (The term �total propagated uncertainty,� or TPU, has been
used for the same concept; however, MARLAP recommends the GUM�s terminology.) The
square of the combined standard uncertainty, denoted by uc

2(y), is called the combined variance.

The mathematical operation of combining the standard uncertainties of the input estimates,
x1,x2,�,xN, to obtain the combined standard uncertainty of the output estimate, y, is called
�uncertainty propagation.� Mathematical methods for propagating uncertainty and for evaluating
the standard uncertainties of the input estimates are described in Section 19.4.

When one repeats a measurement many times, the observed standard deviation is generated pri-
marily by random measurement errors and not by those systematic errors that remain fixed from
one measurement to the next. Although the combined standard uncertainty of a result is ex-
pressed in the form of an estimated standard deviation, it is intended to account for both random
and systematic errors, and for this reason it should tend to be somewhat larger than the standard
deviation that is observed in repeated measurements. So, if the measurement is repeated many
times and the observed standard deviation is substantially larger than the combined standard un-
certainties of the results, one may conclude that the uncertainties are being underestimated.

Methods for evaluating the standard uncertainties u(xi) are classified as either Type A or Type B.
A Type A evaluation is a statistical evaluation based on repeated observations. One typical
example of a Type A evaluation involves making a series of independent measurements of a
quantity, Xi, and calculating the arithmetic mean and the experimental standard deviation of the
mean. The arithmetic mean is used as the input estimate, xi, and the experimental standard
deviation of the mean is used as the standard uncertainty, u(xi). There are other Type A methods,
but all are based on repeated measurements. Any evaluation of standard uncertainty that is not a
Type A evaluation is a Type B evaluation.
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Sometimes a Type B evaluation of uncertainty involves making a best guess based on all avail-
able information and professional judgment. Laboratory workers may be reluctant to make this
kind of evaluation, but it is better to make an informed guess about an uncertainty component
than to ignore it completely.

A standard uncertainty u(xi) may be called a �Type A� or �Type B� standard uncertainty, depend-
ing on its method of evaluation, but no distinction is made between the two types for the pur-
poses of uncertainty propagation.

19.3.4  Corrections for Systematic Effects

When a systematic effect in the measurement process has been identified and quantified, a quan-
tity should be included in the mathematical measurement model to correct for it. The quantity,
called a correction (additive) or correction factor (multiplicative), will have an uncertainty which
should be evaluated and propagated.

Whenever a previously unrecognized systematic effect is detected, the effect should be investi-
gated and either eliminated procedurally or corrected mathematically.

19.3.5  Counting Uncertainty

The counting uncertainty of a radiation measurement (historically called �counting error�) is the
component of uncertainty caused by the random nature of radioactive decay and radiation count-
ing. Radioactive decay is inherently random in the sense that two atoms of a radionuclide will
generally decay at different times, even if they are identical in every discernible way. Radiation
counting is also inherently random unless the efficiency of the counting instrument is 100 %.

In many cases the counting uncertainty in a single gross radiation counting measurement can be
estimated by the square root of the observed counts. The Poisson model of radiation counting,
which is the mathematical basis for this rule, is discussed in Section 19.5. Note that the use of
this approximation is a Type B evaluation of uncertainty.

Historically many radiochemistry laboratories reported only the counting uncertainties of their
measured results. MARLAP recommends that a laboratory consider all possible sources of meas-
urement uncertainty and evaluate and propagate the uncertainties from all sources believed to be
potentially significant in the final result.

19.3.6  Expanded Uncertainty

When a laboratory reports the result of a measurement, it may report the combined standard
uncertainty, uc(y), or it may multiply uc(y) by a factor k, called a coverage factor, to produce an
expanded uncertainty, denoted by U, such that the interval from y ! U to y + U has a specified
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5 When the distribution of the result is highly asymmetric, so that the result is more likely to fall on one side of the
value of the measurand than the other, the use of a single expanded uncertainty, U, to construct a symmetric uncer-
tainty interval about the result may be misleading, especially if one wishes to state an approximate coverage prob-
ability for the interval. However, methods for constructing an asymmetric uncertainty interval with a stated coverage
probability are beyond the scope of this chapter and require more information than that provided by the input
estimates, their standard uncertainties, and estimated covariances (e.g., Monte Carlo simulation). Note that the value
of the combined standard uncertainty is unaffected by the symmetry or asymmetry of the distribution.
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high probability p of containing the value of the measurand. The specified probability, p, is called
the level of confidence or the coverage probability and is generally only an approximation of the
true probability of coverage.

When the distribution of the measured result is approximately normal, the coverage factor is
often chosen to be k = 2 for a coverage probability of approximately 95 %. An expanded uncer-
tainty calculated with k = 2 or 3 is sometimes informally called a �two-sigma� or �three-sigma�
uncertainty. In general, if the desired coverage probability is γ and the combined standard uncer-
tainty is believed to be an accurate estimate of the standard deviation of the measurement proc-
ess, the coverage factor for a normally distributed result is k = z(1 + γ) / 2, which can be found in a
table of quantiles of the standard normal distribution (see Table G.1 in Appendix G).

The GUM recommends the use of coverage factors in the range 2�3 when the combined standard
uncertainty represents a good estimate of the true standard deviation. Attachment 19D describes a
more general procedure for calculating the coverage factor, kp, that gives a desired coverage
probability p when there is substantial uncertainty in the value of uc(y).

The GUM does not assign a name to the interval y ± U, but it clearly states that the interval
should not be called a �confidence interval,� because this term has a precise statistical definition
and the interval described by the expanded uncertainty usually does not meet the requirements.
The interval y ± U is sometimes called an �uncertainty interval.�5

19.3.7  Significant Figures

The number of significant figures that should be reported for the result of a measurement
depends on the uncertainty of the result. A common convention is to round the uncertainty (stan-
dard uncertainty or expanded uncertainty) to either one or two significant figures and to report
both the measured value and the uncertainty to the resulting number of decimal places (ISO,
1995; Bevington, 1992; EPA, 1980; ANSI N42.23). MARLAP recommends this convention and
suggests that uncertainties be rounded to two figures. The following examples demonstrate the
application of the rule.
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EXAMPLES

MEASURED
VALUE

(y)

EXPANDED
UNCERTAINTY 

U = kuc(y)

REPORTED
RESULT

0.8961     0.0234 0.896 ± 0.023

0.8961     0.2342 0.90 ± 0.23

0.8961     2.3419 0.9 ± 2.3

0.8961   23.4194 1 ± 23

0.8961 234.1944 0 ± 230

Only final results should be rounded in this manner. Intermediate results in a series of calculation
steps should be carried through all steps with additional figures to prevent unnecessary roundoff
errors. Additional figures are also recommended when the data are stored electronically. Round-
ing should be performed only when the result is reported. (See Section 19.5.11 for a discussion of
the measurement uncertainty associated with rounding.)

19.3.8  Reporting the Measurement Uncertainty

When a measured value y is reported, its uncertainty should always be stated. The laboratory may
report either the combined standard uncertainty uc(y) or the expanded uncertainty U.

The measured value, y, and its expanded uncertainty, U, may be reported in the format y ± U or
y +� U.

The plus-minus format may be used to report an expanded uncertainty, but it generally should be
avoided when reporting a standard uncertainty, because readers are likely to interpret it as a con-
fidence interval with a high coverage probability. A commonly used shorthand format for report-
ing a result with its standard uncertainty places the one or two digits of the standard uncertainty
in parentheses immediately after the corresponding final digits of the rounded result. For ex-
ample, if the rounded result of the measurement is 1.92 and the standard uncertainty is 0.14, the
result and uncertainty may be shown together as 1.92(14). Another acceptable reporting format
places the entire standard uncertainty in parentheses. The result in the preceding example would
appear in this format as 1.92(0.14). The laboratory may also report the standard uncertainty
explicitly.

Since laboratories may calculate uncertainties using different methods and report them using
different coverage factors, it is a bad practice to report an uncertainty without explaining what it
represents. Any analytical report, even one consisting of only a table of results, should state



Measurement Uncertainty

19-10MARLAP JULY 2004

whether the uncertainty is the combined standard uncertainty or an expanded uncertainty, and in
the latter case it should also state the coverage factor used and, if possible, the approximate cov-
erage probability. A complete report should also describe the methods used to calculate the un-
certainties. If the laboratory uses a shorthand format for the uncertainty, the report should include
an explanation of the format.

The uncertainties for environmental radioactivity measurements should be reported in the same
units as the results. Relative uncertainties (i.e., uncertainties expressed as percentages) may also
be reported, but the reporting of relative uncertainties alone is not recommended when the meas-
ured value may be zero, because the relative uncertainty in this case is undefined. A particularly
bad practice, sometimes implemented in software, is to compute the relative uncertainty first and
multiply it by the measured value to obtain the absolute uncertainty. When the measured value is
zero, the uncertainty is reported incorrectly as zero. Reporting of relative uncertainties without
absolute uncertainties for measurements of spiked samples or standards generally presents no
problems, because the probability of a negative or zero result is negligible.

It is possible to calculate radioanalytical results that are less than zero, although negative radio-
activity is physically impossible. Laboratories sometimes choose not to report negative results or
results that are near zero. Such censoring of results is not recommended. All results, whether pos-
itive, negative, or zero, should be reported as obtained, together with their uncertainties.

The preceding statement must be qualified, because a measured value y may be so far below zero
that it indicates a possible blunder, procedural failure, or other quality control problem. Usually,
if y + 3uc(y) < 0, the result should be considered invalid, although the accuracy of the uncertainty
estimate uc(y) must be considered, especially in cases where only few counts are observed during
the measurement and counting uncertainty is the dominant component of uc(y). (See Chapter 18,
Laboratory Quality Control, and Attachment 19D of this chapter.)

19.3.9  Recommendations

MARLAP makes the following recommendations to radioanalytical laboratories.

� All radioanalytical laboratories should adopt the terminology and methods of the Guide to
the Expression of Uncertainty in Measurement (ISO, 1995) for evaluating and reporting
measurement uncertainty.

� The laboratory should follow QC procedures that ensure the measurement process
remains in a state of statistical control, which is a prerequisite for uncertainty evaluation.

� Uncertainty estimates should account for both random and systematic effects in the meas-
urement process, but they should not account for possible blunders or other spurious
errors. Spurious errors indicate a loss of statistical control of the process.
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� The laboratory should report each measured value with either its combined standard
uncertainty or its expanded uncertainty.

� The reported measurement uncertainties should be clearly explained. In particular, when
an expanded uncertainty is reported, the coverage factor should be stated, and, if possible,
the approximate coverage probability should also be given.

� A laboratory should consider all possible sources of measurement uncertainty and eval-
uate and propagate the uncertainties from all sources believed to be potentially significant
in the final result.

� Each uncertainty should be rounded to either one or two significant figures, and the
measured value should be rounded to the same number of decimal places as its uncer-
tainty. (MARLAP prefers the use of two figures in the uncertainty.) Only final results
should be rounded in this manner.

� The laboratory should report all results, whether positive, negative, or zero, as obtained,
together with their uncertainties.

MARLAP makes no recommendations regarding the presentation of radioanalytical data by the
laboratory�s clients or other end users of the data.

19.4 Procedures for Evaluating Uncertainty

The usual steps for evaluating and reporting the uncertainty of a measurement may be sum-
marized as follows (adapted from Chapter 8 of the GUM):

1. Identify the measurand, Y, and all the input quantities, Xi, for the mathematical model.
Include all quantities whose variability or uncertainty could have a potentially significant
effect on the result. Express the mathematical relationship, Y = f(X1,X2,�,XN), between
the measurand and the input quantities.

2. Determine an estimate, xi, of the value of each input quantity, Xi  (an �input estimate,� as
defined in Section 19.3.2).

3. Evaluate the standard uncertainty, u(xi), for each input estimate, xi , using either a Type A
or Type B method of evaluation (see Section 19.3.3).

4. Evaluate the covariances, u(xi,xj), for all pairs of input estimates with potentially signifi-
cant correlations.
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5. Calculate the estimate, y, of the measurand from the relationship y = f(x1,x2,�,xN), where
f is the function determined in Step 1.

6. Determine the combined standard uncertainty, uc(y), of the estimate, y (see Section
19.3.3).

7. Optionally multiply uc(y) by a coverage factor k to obtain the expanded uncertainty U
such that the interval [y ! U, y + U] can be expected to contain the value of the measur-
and with a specified probability (see Section 19.3.6 and Attachment 19D).

8. Report the result as y ± U with the unit of measurement, and, at a minimum, state the
coverage factor used to compute U and the estimated coverage probability. Alternatively,
report the result, y, and its combined standard uncertainty, uc(y), with the unit of
measurement.

19.4.1  Identifying Sources of Uncertainty

The procedure for assessing the uncertainty of a measurement begins with listing all conceivable
sources of uncertainty in the measurement process. Even if a mathematical model has been iden-
tified, further thought may lead to the inclusion of more quantities in the model. Some sources of
uncertainty will be more significant than others, but all should be listed.

After all conceivable sources of uncertainty are listed, they should be categorized as either poten-
tially significant or negligible. Each uncertainty that is potentially significant should be evaluated
quantitatively. The following sources of uncertainty may not always be significant but should at
least be considered:

� radiation counting
� instrument calibration (e.g., counting efficiency)
� tracers, carriers, or other methods of yield measurement
� variable instrument backgrounds
� variable counting efficiency (e.g., due to the instrument or to source geometry and

placement)
� contamination of reagents and tracers
� interferences, such as crosstalk and spillover
� baseline determination (gamma-ray spectrometry)
� laboratory subsampling

Other sources of uncertainty include:

� volume and mass measurements
� determination of counting time and correction for dead time
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� time measurements used in decay and ingrowth calculations
� approximation errors in simplified mathematical models
� published values for half-lives and radiation emission probabilities

NOTE: MARLAP does not recommend that laboratories expend tremendous effort on the evalu-
ation of small components of uncertainty when much larger components are known to dominate
the combined standard uncertainty of the result. However, this chapter does provide guidance in
several places on the evaluation of very small uncertainties. Such examples may be instructive
even if the uncertainties are negligible, because they illustrate either important concepts or pos-
sible methods of uncertainty evaluation. Furthermore, an uncertainty component that is negligible
in one context (e.g., pipetting uncertainty in the context of measuring the activity of a
radionuclide in a soil sample) may be considered significant in another (e.g., quality control of
measuring instruments). It is also true that a very large number of small uncertainties may be
significant when combined.

19.4.2  Evaluation of Standard Uncertainties

Calculating the combined standard uncertainty of an output estimate y = f(x1,x2,�,xN) requires
the evaluation of the standard uncertainty of each input estimate, xi. As stated earlier, methods for
evaluating standard uncertainties are classified as either �Type A� or �Type B.� A Type A eval-
uation of an uncertainty uses a series of measurements to estimate the standard deviation empiri-
cally. Any other method of evaluating an uncertainty is a Type B method.

In general, the standard uncertainty of an input estimate, xi, is an estimated standard deviation for
the estimator whose value is used for xi. The appropriate methods for estimating this standard
deviation depend on how the value of the input estimate is obtained.

19.4.2.1  Type A Evaluations

Suppose Xi is an input quantity in the mathematical model. If a series of n independent observa-
tions of Xi are made under the same measurement conditions, yielding the results Xi,1, Xi,2, ..., Xi,n,
the appropriate value for the input estimate xi is the arithmetic mean, or average, , defined asXi

The experimental variance of the observed values is defined as
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, even if the individual observations Xi,k are obtained under different conditions of measurement, so long as allXi

pairs of distinct observations, Xi,k and Xi,l, can be considered to be uncorrelated. However, in these circumstances, it
is sometimes better to define the input estimate, xi, to be a weighted average of the observations.
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and the experimental standard deviation, s(Xi, k), is the square root of s2(Xi, k). The experimental
standard deviation of the mean, s( ), is obtained by dividing s(Xi, k) by .6Xi n

The experimental standard deviation of the mean is also commonly called the �standard error of
the mean.�

The Type A standard uncertainty of the input estimate xi =  is defined to be the experimentalXi
standard deviation of the mean. Combining the preceding formulas gives the following equation
for the standard uncertainty of xi:

When the input estimate xi and standard uncertainty u(xi) are evaluated as described above, the
number of degrees of freedom for the evaluation is equal to n ! 1, or one less than the number of
independent measurements of the quantity Xi . In general, the number of degrees of freedom for a
statistical determination of a set of quantities equals the number of independent observations
minus the number of quantities estimated. The number of degrees of freedom for each evaluation
of standard uncertainty is needed to implement the procedure for calculating coverage factors
described in Attachment 19D.

EXAMPLE 19.1  Ten independent measurements of a quantity Xi are made, yielding the values

12.132    12.139    12.128    12.133    12.132
12.135    12.130    12.129    12.134    12.136

The estimated value xi is the arithmetic mean of the values Xi,k .

xi ' Xi '
1
n j

n

k'1
Xi,k '

121.328
10

' 12.1328
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The standard uncertainty of xi is

u(xi) ' s(Xi) '
1

n (n&1) j
n

k'1
(Xi,k & Xi)

2

'
1

10 (10�1) j
10

k'1
(Xi,k & 12.1328)2

' 1.12889 × 10&6 ' 0.0011

USE OF HISTORICAL DATA

In some cases there may be accumulated data for a measurement system, such as a balance or
pipet, which can be used in a Type A evaluation of uncertainty for future measurements,
assuming the measurement process remains in control. In fact the use of recent historical data is
advisable in such cases, because it enlarges the pool of data available for uncertainty evaluation
and increases the number of degrees of freedom. This type of uncertainty evaluation can be
linked closely to the measurement system�s routine quality control.

One may pool recent historical data with current measurement data, or one may evaluate an
uncertainty based on historical data alone. The appropriate expression for the standard uncer-
tainty depends on how the data are used to calculate the input estimate, xi, and on whether xi is
used to estimate the value of a parameter or to predict the value of a variable. An example of
estimating the value of a parameter is measuring the mass of material in a container using an
analytical balance. An example of predicting the value of a variable is calibrating a pipet, since
the actual volumes dispensed by the pipet in subsequent measurements vary and are seldom
measured directly.

Attachment 19E provides descriptions and examples of the use of historical data for Type A eval-
uations of uncertainty in mass and volume measurements.

EVALUATION OF COVARIANCE

If Xi and Xj are two input quantities and estimates of their values are correlated, a Type A evalua-
tion of covariance may be performed by making n independent pairs of simultaneous observa-
tions of Xi and Xj and calculating the experimental covariance of the means. If the observed pairs
are (Xi,1,Xj,1), (Xi,2,Xj,2), �, (Xi,n,Xj,n), the experimental covariance of the values is
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and the experimental covariance of the means  and  isXi Xj

So, the Type A covariance of the input estimates xi =  and xj =  isXi Xj

An evaluation of variances and covariances of quantities determined by the method of least
squares may also be a Type A evaluation.

19.4.2.2  Type B Evaluations

There are many ways to perform Type B evaluations of standard uncertainty. This section de-
scribes some common Type B evaluations but is not meant to be exhaustive.

POISSON COUNTING UNCERTAINTY

One example of a Type B method already given is the estimation of counting uncertainty using
the square root of the observed counts. If the observed count is N, when the Poisson approxima-
tion is used, the standard uncertainty of N may be evaluated as u(N) = . When N may be veryN
small or even zero, MARLAP recommends the use of the equation u(N) =  instead (seeN % 1
Attachment 19D).

EXAMPLE 19.2  A Poisson counting measurement is performed, during which N = 121 counts
are observed. So, the standard uncertainty of N is u(N) =  = 11.121

RECTANGULAR DISTRIBUTION

Sometimes a Type B evaluation of an uncertainty u(x) consists of estimating an upper bound a
for the magnitude of the error of x based on professional judgment and the best available infor-
mation. If nothing else is known about the distribution of the measured result, then after a is esti-
mated, the standard uncertainty may be calculated using the equation 
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u(x) ' a
3

(19.8)

u(x) ' a 1 % β2

6
(19.9)

which is derived from a statistical model in which the error has a rectangular, or uniform, distri-
bution bounded by �a and +a (see Section 19A.6 in Attachment 19A).

EXAMPLE 19.3  The maximum error of a measured value x = 34.40 is estimated to be a = 0.05,
with all values between 34.35 and 34.45 considered equally likely. So, the standard uncertainty
of x is u(x) = 0.05 /  = 0.029.3

EXAMPLE 19.4  A strontium carrier solution is prepared by dissolving strontium nitrate in
acidified water. The purity, P, of the strontium nitrate is stated to be 99.9 %, or 0.999, but no
tolerance or uncertainty is provided. By default, a rectangular distribution with half-width
1 ! P, or 0.001, is assumed. So, the standard uncertainty of P is evaluated as u(P) =
0.001 /  = 0.00058.3

TRAPEZOIDAL DISTRIBUTION

It may also happen that one can estimate an upper bound, a, for the magnitude of the error so that
the input quantity is believed with near certainty to lie between x ! a and x + a, but one believes
that values near x are more likely than those near the extremes, x ± a. In this case, a symmetric
trapezoidal distribution may be used to obtain the standard uncertainty of x. The trapezoidal dis-
tribution is named for the fact that the graph of its pdf has the shape of a trapezoid (see Section
19A.7 in Attachment 19A). To use the trapezoidal model, one determines the value a, which rep-
resents the maximum possible error of the input estimate, and another value, β, which describes
the fraction of possible values about the input estimate that are considered most likely
(0 < β < 1). Then the standard uncertainty of x is given by the following expression.

As β approaches zero, the trapezoidal distribution becomes triangular, and the standard uncer-
tainty of x approaches . As β approaches one, the trapezoidal distribution becomes rectan-a / 6
gular, and the standard uncertainty of x approaches .a / 3
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EXAMPLE 19.5  Extreme bounds for a quantity X are estimated to be 34.3 and 34.5, with val-
ues between 34.35 and 34.45 considered most likely. Using the trapezoidal model, one obtains
the input estimate

x ' 34.3 % 34.5
2

the half-width

a '
34.5 & 34.3

2
' 0.1

and the fraction

β ' 34.45 & 34.35
34.5 & 34.3

'
0.1
0.2

' 0.5

Then the standard uncertainty of x is calculated as follows.

u(x) ' a 1 % β2

6
' 0.1 1 % 0.52

6
' 0.046

EXAMPLE 19.6  The manufacturer of a 100-milliliter volumetric flask specifies that the
capacity tolerance is 0.08 mL. The user of the flask assumes the tolerance represents the half-
width of a triangular distribution and evaluates the standard uncertainty of the capacity to be
0.08 /  = 0.033 mL. (See Section 19.5.10 and Attachment 19E for more information about6
the uncertainty of a volume measurement.)

IMPORTED VALUES

When the estimate of an input quantity is taken from an external source, such as a book or a cali-
bration certificate, which states the uncertainty as a multiple of the standard deviation s, the stan-
dard uncertainty is obtained by dividing the stated uncertainty by the stated multiplier of s.

EXAMPLE 19.7  The uncertainty for a measured activity concentration, cA, is stated to be 0.015
Bq/L and the stated multiplier is 2. So, the standard uncertainty of cA is u(cA) = 0.015 / 2 =
0.0075 Bq/L.

If the estimate is provided by a source which gives a bound c for the error such that the interval
from x ! c to x + c contains the true value with 100γ % confidence (0 < γ < 1) but no other infor-
mation about the distribution is given, the measured result may be assumed to have a normal dis-
tribution, and the standard uncertainty may therefore be evaluated as
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u(x) ' c
z(1%γ) /2

(19.10)

The value of z(1 + γ) / 2 may be found in a table of quantiles of the standard normal distribution (see
Table G.1 in Appendix G).

EXAMPLE 19.8  The specific activity, x, of a commercial standard solution is stated to lie
within the interval (4530 ± 64) Bq/g with 95 % confidence. The standard uncertainty may
therefore be evaluated as u(x) = 64 / z0.975 = 64 / 1.96 = 33 Bq/g.

EVALUATION OF COVARIANCE

Evaluation of the covariance of two input estimates, xi and xj, whose uncertainties are evaluated
by Type B methods may require expert judgment. Generally, in such cases it is simpler to esti-
mate the correlation coefficient, r(xi,xj), first and then multiply it by the standard uncertainties,
u(xi) and u(xj) to obtain the covariance, u(xi,xj). The correlation coefficient must be a number
between !1 and +1. A correlation coefficient of zero indicates no correlation between the esti-
mates, while a value of ±1 indicates the strongest possible correlation. Usually, if the two input
estimates have a significant correlation, it is easy to guess the sign of the correlation coefficient,
but estimating its magnitude may require knowledge and experience.

If the input estimates are imported values (e.g., from a published reference), the only practical
method of evaluating their covariance is to use the correlation coefficient, if any, provided with
the estimates. When no correlation coefficient is stated, the input estimates must be assumed to
be uncorrelated.

In many cases when a correlation between two input estimates is suspected, the reason for the
suspicion is that identifiable random or systematic effects in the measurement process are known
to affect both estimates. It may be possible in such cases to include additional explicit variables
in the mathematical model to account for those effects, eliminating the need for Type B covar-
iance evaluations.

Sometimes two input estimates for one measurement model are explicitly calculated from other
measured values. Section 19.4.4 shows how one may evaluate the covariance for two such calcu-
lated values.
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7 The uncertainty propagation formula may be derived by approximating the function f by a first-order Taylor
polynomial.
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u 2
c (y) 'j

N

i'1

Mf
Mxi

2

u 2(xi) % 2 j
N&1

i'1
j
N

j' i%1

Mf
Mxi

Mf
Mxj

u(xi,xj)

Uncertainty Propagation Formula

(19.11)

19.4.3  Combined Standard Uncertainty

19.4.3.1  Uncertainty Propagation Formula

Consider the mathematical model Y = f(X1,X2,�,XN). If x1, x2, �, xN are measured values of the
input quantities, Xi, and y = f(x1,x2,�,xN) is the calculated value of the output quantity, Y, the
combined standard uncertainty of y is obtained using the following formula.

Here u2(xi) denotes the estimated variance of xi , or the square of its standard uncertainty; u(xi,xj)
denotes the estimated covariance of xi and xj; Mf / Mxi (or My / Mxi) denotes the partial derivative of
f with respect to Xi evaluated at the measured values x1, x2, �, xN; and uc

2(y) denotes the combined
variance of y, whose positive square root, uc(y), is the combined standard uncertainty of y. The
partial derivatives, Mf / Mxi, are called sensitivity coefficients.

The preceding formula, called the �law of propagation of uncertainty� in the GUM, will be called
the �uncertainty propagation formula� or the �first-order uncertainty propagation formula� in this
document. Equation 19.11 is commonly used to define the combined standard uncertainty, but
note that the combined standard uncertainty is only an approximation of the true standard devia-
tion of the output estimate, and sometimes other definitions provide better approximations (e.g.,
see Section 19.4.5.1).7

Table 19.1 shows several rules for partial differentiation, which tend to be useful when one cal-
culates the sensitivity coefficients in the uncertainty propagation formula. Table 19.2 shows how
to propagate uncertainties in some common cases. The expressions for the combined standard
uncertainties shown in Table 19.2 may be derived from the uncertainty propagation formula
using the differentiation rules listed in Table 19.1.
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In the following equations the symbols F and G denote arbitrary expressions, which may contain the variables
x1,x2,...,xN. The symbol c denotes either a constant expression or any other expression that does not contain the
variable xi.

Mc
Mxi

' 0 M(F ± G)
Mxi

'
MF
Mxi

± MG
Mxi

M(F c)
Mxi

' cF c&1 MF
Mxi

Mxi

Mxi

' 1 M(FG)
Mxi

'
MF
Mxi

G % F MG
Mxi

M(eF)
Mxi

' eF MF
Mxi

Mxj

Mxi

' 0, if i … j M(F / G)
Mxi

'
(MF / Mxi)G & F (MG / Mxi)

G 2

M(ln F)
Mxi

'
MF / Mxi

F

M(cF)
Mxi

' c MF
Mxi

M(1 / F)
Mxi

'
&MF / Mxi

F 2

M(log10 F)
Mxi

'
MF / Mxi

(ln 10)F

TABLE 19.1 � Differentiation rules

SUMS AND
DIFFERENCES

If a and b are constants, then
u 2

c (ax ± by) ' a 2u 2(x) % b 2u 2(y) ± 2ab @ u(x,y)

PRODUCTS If x and y are measured values, then
u 2

c (xy) ' u 2(x)y 2 % x 2u 2(y) % 2xy @ u(x,y)
When x and y are nonzero, the formula may be rewritten as

u 2
c (xy) ' x 2y 2 u 2(x)

x 2
%

u 2(y)
y 2

%
2u(x,y)

xy

QUOTIENTS If x and y are measured values, then

u 2
c

x
y

'
u 2(x)

y 2
%

x 2u 2(y)
y 4

&
2x @ u(x,y)

y 3

When x is nonzero, the variance formula may be rewritten as

u 2
c

x
y

'
x 2

y 2

u 2(x)
x 2

%
u 2(y)

y 2
&

2u(x,y)
xy

EXPONENTIALS If a is a constant, then
u 2

c (eax ) ' a 2 e2ax u 2(x)
If n is a positive integral constant, then

u 2
c (x n ) ' n 2 x 2n & 2 u 2(x)

LOGARITHMS If a is a constant and ax is positive, then

u 2
c (ln ax) ' u 2(x)

x 2
and u 2

c (log10 ax) ' u 2(x)
(ln 10)2 x 2

. u 2(x)
(5.302)x 2

TABLE 19.2 � Applications of the first-order uncertainty propagation formula
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u 2
c (y) �� j

N

i��1

Mf
Mxi

2

u 2(xi) (19.12)

If the input estimates x1, x2, �, xN are uncorrelated, the uncertainty propagation formula reduces
to

Equation 19.12 is only valid when the input estimates are uncorrelated. Although this case occurs
frequently in practice, there are notable exceptions. When input estimates are obtained using the
same measuring devices or the same standard solutions, or when they are calculated from the
same data, there is a potential for correlation. For example, instrument calibration parameters
determined by least-squares analysis may be strongly correlated. Fortunately, the method of least
squares provides covariance estimates with almost no additional effort (see Attachment 19C). In
general, ignoring correlations between the input estimates may lead to overestimation or under-
estimation of the combined standard uncertainty.

EXAMPLE 19.9

Problem: A 6000-second gross-alpha measurement is performed on a test source prepared by
evaporating water on a stainless steel planchet. The measurement produces 120 alpha counts.
The preceding blank measurement on the instrument had a duration of 6000 s and produced 42
alpha counts. The estimated alpha-particle counting efficiency is 0.223 with a standard uncer-
tainty of 0.015. The sample volume analyzed is 0.05000 L, with a standard uncertainty of
0.00019 L. The alpha-particle emission rate per unit volume is described by the mathematical
model

cα '
NS / tS & NB / tB

g V
where

cα is the alpha-particle emission rate per unit volume;
NS is the source count (NS = 120);
NB is the blank count (NB = 42);
tS is the source count time (tS = 6000 s);
tB is the blank count time (tB = 6000 s);
g is the counting efficiency (g = 0.223); and
V is the volume analyzed (V = 0.0500 L).

What is the output estimate cα and what is its combined standard uncertainty, uc(cα)? (Use the
Poisson approximation for the uncertainties of NS and NB.)
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Solution: First compute the output estimate cα (alpha particles per second per liter).

cα '
NS / tS & NB / tB

gV
'

120/6000 & 42/6000
(0.223)(0.05000)

. 1.17 s&1 @ L&1

Then compute the combined standard uncertainty uc(cα). The only uncertainties included in the
model will be those associated with the counts NS and NB, the efficiency g, and the volume V.
There is no reason to suspect correlations between the measured values; so, the uncertainty
propagation formula becomes

u 2
c (cα) '

Mcα
MNS

2

u 2(NS) %
Mcα
MNB

2

u 2(NB) %
Mcα
Mg

2

u 2(g) %
Mcα
MV

2

u 2(V)

The sensitivity coefficients are evaluated using the differentiation rules shown in Table 19.1:

Mcα
MNS

'
M(NS / tS & NB / tB) / MNS

gV

'
M(NS / tS) / MNS & 0

gV

'
MNS / MNS

tSgV

'
1

tSgV
' 0.0149477 s&1 @ L&1

Mcα
MNB

'
M(NS / tS & NB / tB) / MNB

gV

'
0 & M(NB / tB) / MNB

gV

'
&MNB / MNB

tBgV

'
&1

tBgV
' &0.0149477 s&1 @ L&1

Mcα
Mg

' &
NS / tS & NB / tB

g 2V
Mg
Mg

' &
NS / tS & NB / tB

g 2 V
' &5.22834 s&1 @ L&1

Mcα
MV

' &
NS / tS & NB / tB

gV 2

MV
MV

' &
NS / tS & NB / tB

gV 2

' &23.3184 s&1 @ L&2

The Poisson approximation is used for the standard uncertainties of the counts NS and NB. So,

u2(NS) = NS = 120      and      u2(NB) = NB = 42
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u 2
c (y) 'j

N

i'1
u 2

i (y) (19.13)

u 2
c (y) 'j

N

i'1
u 2

i (y) % 2 j
N&1

i'1
j
N

j' i%1
r(xi,xj)ui(y)uj(y) (19.14)

Recall from the statement of the problem that u(g) = 0.015 and u(V) = 0.00019. When the
values of all these expressions are substituted into the uncertainty propagation formula, the
combined variance is 

u 2
c (cα) ' (0.0149477)2(120) % (&0.0149477)2(42) % (&5.22834)2(0.015)2

% (&23.3184)2(0.00019)2

' 0.0424 s&2 @ L&2

So, the combined standard uncertainty is uc(cα) =  . 0.21 s!1 @ L!1.0.0424

19.4.3.2  Components of Uncertainty

The product of |Mf / Mxi | and the standard uncertainty u(xi) is called the component of the com-
bined standard uncertainty generated by the standard uncertainty of xi , and may be denoted
by ui(y). When all the input estimates are uncorrelated, the combined standard uncertainty may be
written in terms of its components as follows.

Since uc
2(y) is the sum of the squares of the components ui(y), the combined standard uncertainty

tends to be determined primarily by its largest components. When the input estimates are corre-
lated, Equation 19.13 is replaced by

Recall that r(xi,xj) denotes the estimated correlation coefficient of xi and xj.

Figure 19.1 relates Equation 19.13 to the Pythagorean theorem about right triangles to illustrate
graphically how uncertainty components are added to produce the combined standard uncertainty
in the case of a model, y = f(x1,x2), with two uncorrelated input estimates, x1 and x2.
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8 When the two input estimates are correlated, the vectors that represent u1(y) and u2(y) may still be added graph-
ically, but they are no longer perpendicular. In this case the correlation coefficient, r(xi,xj), equals the cosine of the
angle between the two vectors. When there are more than two input quantities, the existence of correlations among
the input estimates makes the graphical addition method impractical.
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u 2
c (y) ' y 2 u 2(x1)

x 2
1

%
u 2(x2)

x 2
2

% @ @ @ %
u 2(xn)

x 2
n

%
u 2(z1)

z 2
1

%
u 2(z2)

z 2
2

% @ @ @ %
u 2(zm)

z 2
m

(19.15)

u 2
c (y) '

u 2
c f(x1 x2 @ @ @xn)

z 2
1 z 2

2 @ @ @z
2
m

% y 2 u 2(z1)

z 2
1

%
u 2(z2)

z 2
2

% @ @ @ %
u 2(zm)

z 2
m

(19.16)

u1(y)

u2(y)
uc(y)

uc
2(y) = u1

2(y) + u2
2(y)

FIGURE 19.1 � Addition of uncertainty components

In the figure, the first component, u1(y), is five times larger than the second component, u2(y),
and as a result the combined standard uncertainty, uc(y), is dominated by u1(y). Ignoring u2(y) in
this case would decrease the combined standard uncertainty by only about 2 % of its value.

When the model involves more than two input quantities, the addition process shown in the
figure may be iterated.8

19.4.3.3  Special Forms of the Uncertainty Propagation Formula

It is helpful to remember certain special forms of the uncertainty propagation formula. For
example, if the values x1, x2, �, xn and z1, z2, �, zm are uncorrelated and nonzero, the combined
standard uncertainty of y =  may be calculated from the formulax1x2 @ @ @xn

z1z2 @ @ @zm

As another example, suppose , where f is some specified function of x1, x2, �, xn ,y ' f(x1,x2,�,xn)

z1z2 @ @ @zm

all the zi are nonzero, and all the input estimates are uncorrelated. Then
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u(y,z) 'j
N

i'1
j
N

j'1

Mf
Mxi

Mg
Mxj

u(xi,xj) (19.17)

Equation 19.16 is particularly useful in radiochemistry, where f(x1,x2,�,xn) might be a net count
rate and z1z2@ @ @zm might be the product of the test portion size, chemical yield, counting effi-
ciency, decay factor, and other sensitivity factors.

EXAMPLE 19.10  Consider the preceding gross-alpha example. Equation 19.16 implies the
following equation for the combined variance of cα.

u 2
c (cα) '

u 2
c (NS / tS & NB / tB)

g 2V 2
% c 2

α
u 2(g )
g 2

%
u 2(V)

V 2

'
u 2(NS) / t 2

S % u 2(NB) / t 2
B

g 2V 2
% c 2

α
u 2(g )
g 2

%
u 2(V)

V 2

Then, since u2(NS) = NS and u2(NB) = NB,

u 2
c (cα) '

NS / t 2
S % NB / t 2

B

g 2V 2
% c 2

α
u 2(g )
g 2

%
u 2(V)

V 2

'
120 / (6000 s)2 % 42 / (6000 s)2

(0.223)2(0.0500 L)2
% (1.17 s&1 @L&1)2 0.0152

0.2232
%

(0.00019 L)2

(0.0500 L)2

' 0.0424 s&2 @ L&2

and uc(cα) = 0.21 s!1 @ L!1.

19.4.4  The Estimated Covariance of Two Output Estimates

Measured values obtained from two measurement processes may be correlated if some of the
same input estimates are used to calculate output estimates in both models. If the two measured
values are to be used as input quantities in a third model, their covariance must be estimated.

Suppose the combined set of input quantities in two mathematical models consists of X1, X2, �,
XN . Then the models can be expressed as Y = f(X1,X2,�,XN) and Z = g(X1,X2,�,XN), where each
of the measurands may actually depend on only a subset of the combined list of input quantities.
If the input estimates are x1, x2, �, xN and the output estimates are y = f(x1,x2,�,xN) and z =
g(x1,x2,�,xN), the covariance of y and z is estimated by
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u(y,z) 'j
N

i'1

Mf
Mxi

Mg
Mxi

u 2(xi) (19.18)

Since u(y,y) = uc
2(y), the preceding equation may be considered a generalization of the first-order

uncertainty propagation formula.

Even when all the input estimates, xi and xj, are uncorrelated, the output estimates, y and z, may
be correlated, but in this case Equation 19.17 reduces to the following.

EXAMPLE 19.11  A radiation counter is calibrated for a certain source geometry and the count-
ing efficiency is determined to be 0.423 with a standard uncertainty of 0.012. A 6000-second
blank measurement is performed and 108 counts are recorded. Next two 3000-second meas-
urements of a radioactive source in the required geometry are performed. The first measure-
ment produces 1210 counts and the second produces 1244 counts. The activity of the source is
calculated twice, using the model

A '
NS / tS & NB / tB

g
where
 A is the source activity;

NS is the count observed when the source is measured (1210 and 1244);
tS is the source count time (3000 s, negligible uncertainty);
NB is the count observed when the blank is measured;
tB is the blank count time (6000 s, negligible uncertainty); and
g is the counting efficiency (0.423 ± 0.012).

Let A1 and A2 denote the two calculated activities. Assuming all the input estimates are uncor-
related, estimate the covariance u(A1, A2).

The standard uncertainties of NS and NB in each measurement are evaluated using the Poisson
approximation. So, u2(NS) = NS and u2(NB) = NB. Then Equation 19.16 can be used to calculate
the combined standard uncertainty of each result, as shown below.

u 2
c (A) '

u 2(NS) / t 2
S % u 2(NB) / t 2

B

g 2
% A 2 u 2(g )

g 2

'
NS / t 2

S % NB / t 2
B

g 2
% A 2 u 2(g )

g 2
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Equation 19.18 for the covariance in this example becomes

u(A1,A2) '
MA1

MNB

MA2

MNB

u 2(NB) %
MA1

Mg

MA2

Mg
u 2(g)

The required sensitivity coefficients are found as follows.

MA
MNB

'
&1
tBg

MA
Mg

' &
NS / tS & NB / tB

g2
' &

A
g

For the first measurement

A1 '
1210 / 3000 & 108 / 6000

0.423
' 0.91095 Bq

uc(A1) '
1210 / 30002 % 108 / 60002

0.4232
% 0.910952 0.0122

0.4232
' 0.0379 Bq

MA1

MNB

'
&1

(6000)(0.423)
' &3.9401 × 10&4 Bq

MA1

Mg
' &

0.91095
0.423

' &2.1536 Bq

For the second measurement

A2 '
1244 / 3000 & 108 / 6000

0.423
' 0.93775 Bq

uc(A2) '
1244 / 30002 % 108 / 60002

0.4232
% 0.937752 0.0122

0.4232
' 0.0387 Bq

MA2

MNB

'
&1

(6000)(0.423)
' &3.9401 × 10&4 Bq

MA2

Mg
' &

0.93775
0.423

' &2.2169 Bq
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9 The uncertainty propagation formula also provides finite estimates of variance in cases where, strictly speaking,
the true variance is infinite or undefined. For example, if x has a normal or Poisson distribution, the variance of 1 / x
is undefined, although the formula provides a finite estimate of it. On the other hand, if the relative standard uncer-
tainty of x is small, the combined variance uc

2(1 / x) will almost always be consistent with observation, making the
estimate useful in practice.
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So, the covariance is estimated to be

u(A1,A2) ' (&3.9401 × 10&4)(&3.9401 × 10&4)(108) % (&2.1536)(&2.2169)(0.012)2

' 7.043 × 10&4 Bq2

The estimated correlation coefficient is

r(A1,A2) '
u(A1,A2)

u(A1)u(A2)
'

7.043 × 10&4

(0.0379)(0.0387)
' 0.48 .

19.4.5  Special Considerations for Nonlinear Models

19.4.5.1  Uncertainty Propagation for Nonlinear Models

The first-order uncertainty propagation formula tends to give better variance estimates when the
function f is linear, because the formula is derived from a linear approximation of f (i.e., a first-
order Taylor polynomial). Generally, obtaining a reliable estimate of uc

2(y) using the first-order
formula requires (at least) that whenever f is nonlinear in one of the input quantities Xi , the rela-
tive uncertainty of the input estimate xi must be small.9 In radiochemistry, for example, this fact
implies that the uncertainty of an instrument calibration factor, chemical yield, or test portion
size should be kept small.

If all the input estimates xi are uncorrelated and distributed symmetrically about their means, a
better approximation of uc

2(y) may be made by including higher-order terms in the uncertainty
propagation formula, as shown below.

See also Section 5.1.2 of the GUM. In some cases, if the uncertainties of the input estimates are
extremely large, even Equation 19.19 may be inadequate.



Measurement Uncertainty

19-30MARLAP JULY 2004

EXAMPLE 19.12  Suppose x and y are independent estimates of input quantities X and Y,
respectively. Then the combined variance of the product p = xy according to the first-order
uncertainty propagation formula is

uc
2(p) = y2 u2(x) + x2 u2(y)

For example, suppose x = 5, with u(x) = 0.5, and y = 10, with u(y) = 3. Then p = 50, and the
first-order formula gives the combined standard uncertainty

uc(p) =  =  15.8102 0.52 % 52 42

When higher-order terms are included,

u 2
c (p) ' y 2 u 2(x) % x 2 u 2(y) % 0 × u 4(x) % 1

2
u 2(x) u 2(y) % 1

2
u 2(y) u 2(x) % 0 × u 4(y)

' y 2 u 2(x) % x 2 u 2(y) % u 2(x)u 2(y)

With numbers,
uc(p) =  =  15.9102 0.52 % 52 32 % 0.52 32

Since 15.9 is only slightly greater than 15.8, in this example the first-order approximation
appears adequate.

The combined variance of the quotient q = x / y according to the first-order formula is

uc
2(q) =  + u 2(x)

y 2
q 2 u 2(y)

y 2

Using the same values for x and y again, q = 0.5 and the first-order formula gives

uc(q) =  =  0.1580.52

102
% 0.52 32

102

When the higher-order terms are included,
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Mq
Mx

'
1
y

M2q
Mx 2

' 0 M3q
Mx 3

' 0

Mq
My

' &
x
y 2

M2q
My 2

'
2x
y 3

M3q
My 3

' &
6x
y 4

M2q
Mx My

' &
1
y 2

M3q
Mx My 2

'
2
y 3

M3q
My Mx 2

' 0

u 2
c (q) ' u 2(x)

y 2
% q 2 u 2(y)

y 2
% 0 × u 4(x) % 1

2
&

1
y 2

2

%
1
y

2
y 3

u 2(x) u 2(y)

%
1
2

&
1
y 2

2

% 0 u 2(y) u 2(x) % 1
2

4x 2

y 6
% &

x
y 2

&
6x
y 4

u 4(y)

'
u 2(x)

y 2
1 % 3 u 2(y)

y 2
% q 2 u 2(y)

y 2
1 % 8 u 2(y)

y 2

With numbers,

uc(q) ' 0.52

102
1 % 3 32

102
% 0.52 32

102
1 % 8 32

102
' 0.205

In this case, since 0.205 is substantially larger than 0.158, the first-order formula is inadequate. 

If the standard uncertainty of y is much larger than 3 (in this case 30 % in relative terms), even
the higher-order formula begins to fail here.

19.4.5.2  Bias due to Nonlinearity

As noted earlier, when the measurement model has the form Y = f(X1,X2,�,XN) and the input
estimates are x1, x2, �, xN, the output estimate is given by y = f(x1,x2,�,xN). If the function, f, is
nonlinear, the output estimate, y, may be a biased estimate of the value of the output quantity, Y,
even if the model is correct and each of the input estimates, xi, is an unbiased estimate of the
associated input quantity (Ku, 1966).

For example, if the model is  and X is an unbiased estimator for some quantity θ,Y ' f(X) ' X 2

then  is a biased estimator for the quantity . (I.e., the mean of the square is not equal toY ' X 2 θ2

the square of the mean.) Since the variance of X is  and the mean of X isV(X) ' E(X 2) & E(X)2

E(X) = θ, the mean of Y in this case is given by
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E(Y) ' E(X 2) ' E(X)2 % V(X) ' θ2 % V(X) (19.20)

Bias(y) . 1
2 j

N

i'1
j
N

j'1

M2f
MxiMxj

u(xi,xj) (19.21)

Bias(y) . 1
2 j

N

i'1

M2f

Mx 2
i

u 2(xi) % j
N&1

i'1
j
N

j' i%1

M2f
MxiMxj

u(xi,xj) (19.22)

So, the bias of  as an estimator for  is equal to the variance of X. In metrology the trueY ' X 2 θ2

variance of the estimator X is unknown of course, but the bias of an output estimate, y = x2, can
be estimated by u2(x), the square of the standard uncertainty of the input estimate, x.

More generally, the portion of the bias of y associated with the nonlinearity of the model may be
estimated, if necessary, by the formula

In practice, Equation 19.21 is equivalent to the following (Ku, 1966).

This bias is usually negligible in comparison to the combined standard uncertainty, uc(y), if the
relative standard uncertainty of each input estimate is small. (These equations are based on an
approximation of the function f by a second-order Taylor polynomial.)

Note that the bias calculated by Equations 19.21 and 19.22 may not represent the overall bias of
the output estimate. It represents only the bias associated with nonlinearity of the mathematical
model. If the input estimates are biased or the model is inexact, the overall bias may be different.

MARLAP does not recommend correcting the output estimate for the estimated bias due to non-
linearity. Instead, the standard uncertainties of the input estimates should be kept small enough to
make this portion of the bias negligible. For a typical radiochemical measurement model
involving a net count rate divided by a denominator consisting of a product of factors such as the
counting efficiency, test portion size, and chemical yield, this requirement means keeping the
uncertainties of the counting times and all the factors in the denominator relatively small. The
relative uncertainties of the raw counts may be large.
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EXAMPLE 19.13  If x is an estimate of a positive quantity X, the bias of y = 1 / x as an estimate
of 1 / X may be approximated using Equation 19.22. Since y is a function of only one variable,
the partial derivatives of y are the same as ordinary derivatives. The first derivative is dy / dx =
!x!2 and the second derivative is d2y / dx2 = 2x!3. So, the bias due to nonlinearity can be esti-
mated as Bias(y) . (1 /2) (2x!3)u2(x) = u2(x) /x3. 

Suppose x = 1.2 and its standard uncertainty is 0.2. Then the calculated value of y is 1 / 1.2, or
0.833, and the estimated bias of y due to nonlinearity is 0.22 / 1.23 = 0.023.

EXAMPLE 19.14  If x and y are uncorrelated, unbiased estimates of quantities X and Y, respec-
tively, the bias of the product z = xy as an estimate of XY is given approximately by

Bias(z) . 1
2

M2z
Mx 2

u 2(x) % M2z
My 2

u 2(y)

which equals zero, since . (In this case, it can be shown that the bias ofM2z / Mx 2 ' M2z / My 2 ' 0
z is exactly zero, not just approximately zero.)

EXAMPLE 19.15  If t is an estimate of the decay time T for a radionuclide whose decay con-
stant is λ (assumed to have negligible uncertainty), the bias of the estimated decay factor D =
e!λt is given approximately by

Bias(D) . 1
2
M2D
Mt 2

u 2(t) ' 1
2
λ2e&λ t u 2(t)

and the relative bias is λ2 u2(t) / 2. For example, suppose the radionuclide is 228Ac, which has a
half-life of T1/2 = 6.15 h, and the decay time has a standard uncertainty of u(t) = 2 h (large for
the sake of illustration). Then the decay constant λ equals ln(2) / 6.15 = 0.112707 h!1. The bias
equation above implies that the relative bias of the decay factor D due to the uncertainty of t is
approximately

Bias(D)
D

. 1
2
λ2u 2(t) ' 1

2
(0.112707)2 (2)2 ' 0.025

or 2.5 %. Note that the relative bias of D is small if  is small. (In this example,u 2(t) / T 2
1/2

u2(t) /  = 22 / 6.152 = 0.1058.)T 2
1/2
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19.4.6  Monte Carlo Methods

An alternative to uncertainty propagation is the use of computerized Monte Carlo methods to
propagate not the uncertainties of input estimates but their distributions. Given assumed distribu-
tions for the input estimates, the method provides an approximate distribution for the output esti-
mate, from which the combined standard uncertainty or an uncertainty interval may be derived.
The joint working group responsible for the GUM is reported to be developing new guidance on
the use of such methods. Monte Carlo methods may be particularly useful when the distribution
of the result is not approximately normal. However, these methods are most effective when the
model can be formulated in terms of independent input estimates.

19.5 Radiation Measurement Uncertainty

19.5.1  Radioactive Decay

Although it is impossible to know when an unstable nucleus will decay, it is possible to calculate
the probability of decay during a specified time interval. The lifetime of the nucleus has an
exponential distribution, which is a model for the life of any object whose expected remaining
life does not change with age.

The exponential distribution is described by one parameter λ, which measures the expected frac-
tional decay rate. This parameter λ is called the decay constant and equals ln(2) / T1/2 , or approx-
imately 0.693 / T1/2 , where T1/2 is the half-life of the radionuclide (sometimes denoted by t1/2). The
half-life is the same as the median of the exponential distribution.

The probability that an atom will survive until time t without decaying is equal to e!λt. Thus the
probability of survival decreases exponentially with time. Consequently, when a large number of
atoms of the same radionuclide are considered, the expected number of surviving atoms also
decreases exponentially with time, as shown in Figure 19.2.

Since the probability that an atom survives until time t is equal to e!λt, it follows that the proba-
bility of decay during this time is 1 ! e!λt.
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FIGURE 19.2 � Expected fraction of atoms remaining at time t

19.5.2  Radiation Counting

Undoubtedly the best-known rule of radiation measurement statistics is the fact that the counting
uncertainty for a gross radiation measurement can be evaluated as the square root of the observed
counts. The square-root rule is useful, because it permits the estimation of a potentially
significant uncertainty component without replicate measurements. Although the rule is usually
valid as an approximation, for reasons which are discussed below, there are limits to its applica-
bility. It is also important to remember that the counting uncertainty is only one component of the
total measurement uncertainty.

19.5.2.1  Binomial Model

When a source containing a radionuclide is placed in a detector, the probability that a particular
atom of the radionuclide will produce a count is the product of three factors: the probability of
decay, the probability of emission of the radiation being measured, and the probability of
detection. According to the exponential decay model, the probability of decay is equal to

, where λ is the decay constant and tS is the counting time. The probability of radiation1 & e&λtS
emission, denoted here by F, is a characteristic of the radionuclide. The probability of detection
is the counting efficiency, g. Then the probability that an atom will generate a count is p = 

Fg.(1 & e&λtS)

If the source initially contains n atoms of the radionuclide, the instrument is stable, and its back-
ground is negligible, the number of observed counts N has a binomial distribution with parame-
ters n and p. In general, if an experiment has only two possible outcomes, which may be called
�success� and �failure,� and the probability of success is p, then the number of successes ob-
served when the experiment is repeated in n independent trials has a binomial distribution with
parameters n and p.
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10 In the rare cases when the Poisson model is inadequate and the binomial model is required, if the instrument
background level is negligible, the standard deviation of the source count NS can be estimated by . If the(1 � p)NS
background is not negligible, the variance of NS is the sum of components contributed by the background and the
source. So, if a Poisson background is measured for time tB and NB counts are observed, the background
contribution to NS is estimated by NBtS / tB, and the source contribution is estimated by (NS ! NBtS / tB). Then the
standard deviation of NS may be estimated by combining the estimated variances of these two contributions, as
shown below.

σNS
. NB

tS

tB

% NS & NB

tS

tB

(1 & p) ' (1 � p)NS % pNB

tS

tB

These expressions for the standard deviation of NS are appropriate only when the source counts are generated by a
single radionuclide or by one radionuclide plus the instrument background.

11  The coefficient of variation of a nonnegative random variable is defined as the ratio of its standard deviation to
its mean (see Attachment 19A).

12 The negative bias of  as an estimator for σN is largely eliminated if one replaces it by . MARLAPN N % 0.25
recommends the estimator  although it is positively biased.N % 1
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Actually the probability p is a random variable, because the counting efficiency for an instrument
and source can vary for a number of reasons, such as source placement, dead time and other
instrument characteristics. These variations generate measurement uncertainty, but their effects
are not included in the �counting uncertainty.� The counting uncertainty is the standard deviation
of the theoretical distribution of counts observed in a fixed time period when the efficiency is
held constant. Thus, the actual variability observed in repeated measurements of a single radio-
active source may be greater than the theoretical counting uncertainty.

19.5.2.2  Poisson Approximation

The mean and variance of the binomial distribution are np and np(1 ! p), respectively. In radia-
tion counting, the value of p is usually small enough that the factor 1 ! p in the variance can be
ignored (i.e., treated as 1). When this is true, the binomial distribution can be approximated by a
Poisson distribution with mean µ = np. The variance of a Poisson distribution equals the mean;
so, both can be estimated by the same measured result N, and the standard deviation can be esti-
mated by .10N

When µ is large,  is an excellent estimator for the standard deviation, σN, but the estimate mayN
be poor when µ is small. For example, if µ = 100, the coefficient of variation of  is only aboutN
5 % and its bias (caused by the nonlinearity of the square-root function) is negligible.11 If µ = 10,
the coefficient of variation is more than 16 % and there is a negative bias of more than 1 %. If
µ = 1, the coefficient of variation is more than 63 % and the negative bias is more than 22 %.
Furthermore, when µ is small, it is possible to observe zero counts, so that  = 0. MARLAPN
recommends that  be replaced by  when extremely low counts are possible (see alsoN N % 1
Attachment 19D).12
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13 It is possible to evaluate the uncertainties associated with the decay and ingrowth of a small number of short-lived
atoms before counting using the binomial model, but under the stated conditions, the assumption of Poisson
counting statistics simplifies the calculation. A more complete evaluation of uncertainty may be necessary if the
same source is counted more than once.
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A sum of independent Poisson quantities also has a Poisson distribution. So, when the Poisson
approximation is valid for all the sources of counts in a counting measurement, the total count
obeys Poisson counting statistics as well.

If a short-lived radionuclide (large λ) is counted in a high-efficiency detector (large g), the prob-
ability p that an atom placed in the detector will produce a count may be so large that the Poisson
approximation is invalid. In this case the Poisson approximation overestimates the counting un-
certainty; however, it is important to consider that the statistical model described thus far repre-
sents only the process of counting. In most cases previous steps in the measurement process
decrease the probability that one of the atoms of interest initially present in the test portion (the
portion of sample taken for analysis) will produce a count. If a correction for decay before count-
ing is performed, the decay factor must be included in p. If the measured activity of a (single)
decay product is used to estimate the activity of a parent, p must include both ingrowth and decay
factors. If a chemical extraction is performed, the recovery factor must be considered. When
these factors are included, the Poisson model is usually valid. Note, however, that these factors
must be measured and their standard uncertainties evaluated and propagated, increasing the total
measurement uncertainty even further.13

Both the binomial and Poisson models may be invalid if one atom can produce more than one
count during the measurement. This situation occurs when the activity of a parent is estimated
from the total count produced by the parent and a series of short-lived progeny (Lucas and
Woodward, 1964; Collé and Kishore, 1997). For example when 222Rn is measured by counting
the emissions of the parent and its progeny, an atom of 222Rn may produce several counts as it
decays through the short-lived series 218Po, 214Pb, 214Bi and 214Po, to the longer-lived 210Pb.
Another example is the measurement of 234Th by beta-counting a source that contains 234Th and
its short-lived progeny, 234mPa.

Both counting models may also be invalid if the total dead time of the measurement is significant
(see Section 19.5.3.1).

Instrument background measurements are usually assumed to follow the Poisson model. This
assumption is reasonable if the background counts are produced by low levels of relatively long-
lived radionuclides. However, the true background may vary between measurements (e.g., cos-
mic background). Furthermore, the measured background may include spurious instrument-
generated counts, which do not follow a Poisson distribution. Generally, the variance of the ob-
served background is somewhat greater than the Poisson counting variance, although it may be
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u 2(R) ' N
t 2

%
N 2

t 4
u 2(t) (19.23)

less for certain types of instruments, such as those that use parallel coincidence counters to com-
pensate for background instability (Currie et al., 1998). Departures from the Poisson model may
be detected using the chi-squared test described in Section 18B.2 of Attachment 18B; however,
deviations from the model over short time periods may be small and difficult to measure.

19.5.3  Count Time and Count Rate

Suppose a radiation counting measurement of duration t is made for the purpose of estimating a
mean count rate r, assumed to be constant, and the result of the measurement (in counts) has a
distribution that is approximately Poisson with mean rt. If t is known precisely, the best estimate
of r given a single observation, N, is the measured count rate R = N / t, and the best estimate of
the variance of the measured rate is u2(R) = N / t2 = R / t. Under the Poisson assumption, even if
repeated measurements are made, the best estimates of the count rate and its variance are ob-
tained by pooling the counts and count times and using the same formulas.

In fact, the count time t is known imperfectly; so a more complete estimate of the variance of R is

The uncertainty of t may be ignored if u(t) / t << 1 / , that is, if the relative standard uncer-N
tainty of t is much less than 1 over the square root of the count.

EXAMPLE 19.16  A source is counted for t = 100 s, where t has standard uncertainty u(t) =
0.1 s, and N = 25 counts are observed. Thus, the observed count rate, R, equals 0.250 s!1.
When u(t) is ignored, the combined standard uncertainty of R is uc(R) =  = 0.050 s!1.N / t 2

When u(t) is included, the combined standard uncertainty is

uc(R) ' N
t 2

%
N 2

t 4
u 2(t) ' 25

1002
%

252

1004
0.12 . 0.050 s&1

In this case the difference between the two uncertainty estimates is negligible.

EXAMPLE 19.17  A source is counted for t = 100 s, where u(t) = 1 s, and N = 10,609 counts are
observed. The count rate, R, equals N / t, or 106.09 s!1. When u(t) is ignored, uc(R) =  =N / t 2

1.03 s!1. When u(t) is included,
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14 If the mean count rate, r, is constant, the waiting times between events are independent exponentially distributed
random variables with parameter λ = r. Therefore, the total time required to obtain n counts is the sum of the n
waiting times, which has a gamma distribution with parameters α = n and λ = r (or α = n and β = 1/λ = 1/r).
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uc(R) ' N
t 2

%
N 2

t 4
u 2(t) ' 10,609

1002
%

10,6092

1004
12 . 1.48 s &1

In this example the two uncertainty estimates are clearly different, although both are relatively
small (1 % to 1.4 %).

Sometimes a radiation counter is set to acquire a predetermined number of counts. In this case
the number of counts is a constant and only the count time varies. If the mean count rate does not
change appreciably during the measurement, then Equation 19.23 may still be used.14

19.5.3.1  Dead Time

The dead time for a counting instrument is the minimum separation, τ, between two events re-
quired for the instrument to process and record both. Theoretical models for dead time are gen-
erally of two types. If the dead time for one event may be extended by a second event that arrives
before the first has been processed, the system is called �paralyzable� and the dead time is called
�extendable.� Otherwise, the system is called �non-paralyzable� and the dead time is called �non-
extendable� (Knoll, 1989; Turner, 1995; NCRP, 1985). Both models are idealized. The behavior
of an actual counting system tends to fall between the two extremes. At low count rates,
however, both models give essentially the same predictions.

At low count rates the observed count rate, N / t, may be corrected for dead time by dividing by
the factor 1 ! Nτ / t. Many counting instruments perform the correction automatically by ex-
tending the real time t of the measurement to achieve a desired live time, tL. Since tL = t ! Nτ, the
corrected count rate is simply N / tL. When the dead time rate for the measurement is low, the
variance of the corrected count rate may be estimated as . Thus, the Poisson model remainsN / t 2

L
adequate if the �count time� is equated with the live time. When the dead time rate is high (above
20 %), the same estimate may not be adequate (NCRP, 1985). In this case the measurement
should be repeated, if possible, in a manner that reduces the dead time rate.

Dead time effects may be evaluated experimentally to confirm that they do not invalidate the
Poisson model at the count rates expected for typical measurements. The chi-squared test de-
scribed in Section 18B.2 of Attachment 18B can be used for this purpose.
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15 The chi-squared distribution is a special case of a gamma distribution, whose relationship to the Poisson distribu-
tion is described by Hoel et al. (1971) and Stapleton (1995). This relationship is the basis for the two formulas in
Equation 19.24. The relationship is such that if X is chi-squared with 2N degrees of freedom and Y is Poisson with
mean µ, then Pr[X # 2µ] = Pr[Y $ N].
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rlower ' χ
2
(1&γ) /2(2N) 2t

rupper ' χ
2
(1%γ) /2(2N % 2) 2t

(19.24)

19.5.3.2  A Confidence Interval for the Count Rate

When the Poisson model of radiation counting is valid, lower and upper confidence limits for the
mean count rate r given an observation of N counts in time t may be calculated as follows:15

Here γ is the desired confidence coefficient, or the minimum probability of coverage, and for any
ν, χp

2(ν) denotes the p-quantile of the chi-squared distribution with ν degrees of freedom (see
Table G.3 in Appendix G). If ν = 0, the chi-squared distribution χ2(ν) is degenerate. For our
purposes, χp

2(0) should be considered to be 0.

EXAMPLE 19.18  Suppose 10 counts are observed during a 600-second instrument background
measurement. Then the 95 % confidence limits for the background count rate are

rlower '
χ2

0.025(20)
(2)(600)

'
9.59078

1200
' 0.00799 s &1

rupper '
χ2

0.975(22)
(2)(600)

'
36.7807

1200
' 0.03065 s &1

EXAMPLE 19.19  Suppose 0 counts are observed during a 600-second measurement. Then the
95 % confidence limits for the count rate are

rlower '
χ2

0.025(0)
(2)(600)

' 0 s &1

rupper '
χ2

0.975(2)
(2)(600)

'
7.3778
1200

' 0.00615 s &1
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19.5.4  Instrument Background

As noted above, single-channel background measurements are usually assumed to follow the
Poisson model, although there may be effects which increase the variance beyond what the model
predicts. For example, cosmic radiation and other natural sources of instrument background may
vary between measurements, the composition of source holders and containers may vary, the
instrument may become contaminated by sources, or the instrument may simply be unstable. For
certain types of instruments, the Poisson model may overestimate the background variance
(Currie et al., 1998). If the background does not closely follow the Poisson model, its variance
should be estimated by repeated measurements.

The �instrument background,� or �instrument blank,� is usually measured with source holders or
containers in place, since the presence of the container may affect the count rate. In many cases,
perhaps most, it is not feasible to use the same container during both the background and test
source measurements, but nearly identical containers should be used. Variations in container
composition may affect the background count rate. If test sources contain enough mass to atten-
uate background radiation, then it is best to use a similar amount of blank material during the
background measurement.

If repeated measurements demonstrate that the background level is stable, then the average, , ofx̄
the results of many similar measurements performed over a period of time may give the best esti-
mate of the background. In this case, if all measurements have the same duration, the experi-
mental standard deviation of the mean, , is also a good estimate of the measurement uncer-s(x̄)
tainty. Given the Poisson assumption, the best estimate of the uncertainty is still the Poisson esti-
mate, which equals the square root of the summed counts, divided by the number of measure-
ments, but the experimental standard deviation may be used when the Poisson assumption is
invalid.

If the background drifts or varies nonrandomly over time (i.e., is nonstationary), it is important to
minimize the consequences of the drift by performing frequent blank measurements.

If the background variance includes a small non-Poisson component, that component can be esti-
mated from historical background data and added to the calculated Poisson component. A chi-
squared statistic may be used to detect and quantify non-Poisson background variance (Currie,
1972; see also Section 18B.3 of Attachment 18B), but chi-squared provides an unbiased estimate
of the additional variance only if the background remains stationary while the data are being
collected. If the observed background counts, in order, are N1, N2, �, Nn and the corresponding
counting intervals are t1, t2, �, tn , then the quantity
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16 Each term of the sum is an unbiased estimator for the non-Poisson variance of the difference between successive
measurements of the background. Note that  is an unbiased estimator for the total variance and(Ni%1 / ti%1 & Ni / ti)

2

, which equals , is an unbiased estimator for the Poisson(Ni%Ni%1) / ti ti%1 (Ni%Ni%1) / (ti% ti%1) × (1/ ti % 1/ ti%1)
variance.
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ξ2
B '

1
n � 1 j

n�1

i'1

Ni%1

ti%1

�
Ni

ti

2

�
Ni % Ni%1

titi%1

(19.25)

may be used to estimate the non-Poisson variance of a net count rate due to background even if
the background is not stationary.16 The distribution of  is not simple, and  may even assumeξ2

B ξ2
B

negative values, which are clearly unrealistic. So, if this estimator is used, it should be calculated
for several data sets and for more than one instrument, if possible, to give an indication of its
reliability. Although replicate measurements are involved, this type of evaluation of uncertainty
should be considered a Type B method.

If background and test source measurements are performed under different conditions, the back-
ground measurement may be biased. Such a bias may occur, for example, if test sources are
counted in containers or on planchets which are not present during background measurements. A
situation of this kind should be avoided if possible.

When instrument background levels are low or when count times are short, it is possible that too
few counts will be observed to provide an accurate estimate of the measurement uncertainty.
Attachment 19D describes a method for choosing an appropriate coverage factor when only few
counts are observed.

19.5.5  Radiochemical Blanks

Instrument background is only one of the sources of counts observed when an analyte-free
sample is analyzed. Other sources may include contaminants in the tracers, reagents, and glass-
ware used for measurements. Contamination of this type tends to be most significant when the
analytes are naturally occurring radionuclides, such as isotopes of uranium, thorium, and radium;
but nonnatural contaminants may also be present in some radiochemical tracers.

The level of contamination may be determined by analyzing reagent blanks or other process
blanks alongside laboratory samples (see Chapter 18). Alternatively, if the contaminant is present
in a specific reagent or tracer solution, its concentration in the solution may be measured and
incorporated into the mathematical model of the measurement. Regardless of which method of
evaluation is used, it is important to remember that the concentration of contaminant may vary
from one reagent lot to another, and that the amount of contaminant in the prepared source may



Measurement Uncertainty

19-43JULY 2004 MARLAP

be affected by incomplete recovery during the chemical separation and purification steps of the
analytical process.

If the amount of blank contaminant varies between measurements (e.g., because the analyte is
present at varying levels in the laboratory environment), it is usually necessary to determine the
blank level and its uncertainty by replicate measurements (a Type A evaluation). In this case,
using the pure Poisson model for the uncertainty of the blank correction is inappropriate. Repli-
cate measurements are also more appropriate if the causes of blank contamination are simply not
well understood.

If there is no observable contamination when analyte-free samples are analyzed, the radiochemi-
cal blank may be only a blank source, which mimics the geometry and composition of an actual
test source. In this case the laboratory should routinely analyze method blanks to check for con-
tamination (see Chapter 18) and take corrective action if contamination is found.

19.5.6  Counting Efficiency

The counting efficiency for a measurement of radioactivity (usually defined as the detection
probability for a particle or photon of interest emitted by the source) may depend on many fac-
tors, including source geometry, placement, composition, density, activity, radiation type and
energy and other instrument-specific factors. The estimated efficiency is sometimes calculated
explicitly as a function of such variables (in gamma-ray spectrometry, for example). In other
cases a single measured value is used (e.g., alpha-particle spectrometry). If an efficiency function
is used, the uncertainties of the input estimates, including those for both calibration parameters
and sample-specific quantities, must be propagated to obtain the combined standard uncertainty
of the estimated efficiency. Calibration parameters tend to be correlated; so, estimated covari-
ances must also be included. If a single value is used instead of a function, the standard uncer-
tainty of the value is determined when the value is measured.

EXAMPLE 19.20  Fifteen sources in the same geometry are prepared from a standard solution
and used to calibrate a radiation counter. The specific activity of the standard is 150.0 Bq/g
with a combined standard uncertainty of 2.0 Bq/g. The steps of the calibration are as follows:

1. A 1-milliliter aliquant of the standard solution is added by pipet to each source and
weighed on an analytical balance. The solution contains the radionuclide of interest
dissolved in 0.3 M nitric acid, whose density at the current room temperature is
1.0079 g/mL. The density of the solution is used only to calculate the buoyancy-correction
factor for the mass measurements, which equals 1.001028 in this case (see Attachment
19E). The uncertainties of the buoyancy-corrected masses are considered negligible.
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2. A blank measurement is made. The blank count time is 6000 s. The number of blank
counts observed is 87.

3. Each source is counted once on the instrument for 300 s.

The radionuclide is long-lived; so, no decay corrections are needed. The uncertainties of the
count times are assumed to be negligible.

The mathematical model for the calibration is:

g ' 1
n j

n

i'1

NS,i / tS & NB / tB

mi aS

where
g is the counting efficiency;
n is the number of sources (15);
NS, i is the gross count observed during the measurement of the ith source;
tS is the source count time (300 s);
NB is the observed blank count (87);
tB is the blank count time (6000 s);
mi is the mass of standard solution added to the ith source; and
aS is the specific activity of the standard solution (150.0 Bq/g).

For the purpose of uncertainty evaluation, it is convenient to rewrite the model as

g ' R
aS

where

R '
1
n j

N

i'1
Ri and Ri '

NS,i / tS & NB / tB

mi

, i ' 1,2, ...,n

The values Ri and their average, , are estimates of the count rate produced by 1 g of the stan-R
dard solution, while  is an estimate of the count rate produced by 1 Bq of activity. TheR / aS
standard uncertainty of  can be evaluated experimentally from the 15 repeated measure-R
ments. Since only one blank measurement is made, the input estimates Ri are correlated with
each other. The covariance between Ri and Rj, for i … j, may be estimated as

u(Ri,Rj) '
MRi

MNB

MRj

MNB

u 2(NB) ' &1
tB mi

&1
tB mj

u 2(NB) '
u 2(NB)

t 2
B mi mj
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However, the correlation is negligible here because the uncertainty of the blank count, NB, is
much smaller than the uncertainty of each source count, NS,i. So, the input estimates Ri will be
treated as if they were uncorrelated, and the following equations will be used to calculate the
combined standard uncertainty of g:

u 2(R) ' s 2(R) ' 1
n (n & 1) j

n

i'1
(Ri & R)2

uc(g ) ' u 2(R)

a 2
S

% g 2 u 2(aS)

a 2
S

Assume the following data were obtained for the 15 calibration sources.

Source number,
i

Uncorrected
mass (g)

Buoyancy-
corrected mass,

 mi / g
Gross count, NS,i Ri / (s!1 @ g!1)

1 1.0056 1.00663 18,375 60.832
2 1.0031 1.00413 18,664 61.943
3 1.0058 1.00683 18,954 62.737
4 1.0082 1.00924 19,249 63.562
5 1.0069 1.00793 19,011 62.857
6 1.0074 1.00843 18,936 62.578
7 1.0048 1.00583 18,537 61.417
8 1.0069 1.00794 18,733 61.937
9 1.0031 1.00413 18,812 62.434
10 1.0079 1.00894 18,546 61.258
11 1.0063 1.00734 18,810 62.229
12 1.0067 1.00774 19,273 63.736
13 1.0055 1.00653 18,893 62.554
14 1.0091 1.01014 18,803 62.033
15 1.0030 1.00403 18,280 60.674

Average,  / (s!1 @ g!1):R
Experimental standard deviation, s(Ri) / (s!1 @ g!1):

Experimental standard deviation of the mean, s( ) / (s!1 @ g!1):R

62.1854
0.8910
0.2301

Then the estimated counting efficiency is

g ' R
aS

'
62.1854 s&1 @g&1

150.0 Bq/g
' 0.4146
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u(g ) ' u 2(R)

a 2
S

% g 2 u 2(aS)

a 2
S

% φ2 (19.26)

u(g ) ' (0.2301 s&1 @g&1)2

(150.0 Bq/g)2
% 0.41462 (2.0 Bq/g)2

(150.0 Bq/g)2
% 0.0122 ' 0.0076 (19.27)

and the (combined) standard uncertainty of g is given by

u(g ) ' (0.2301 s&1 @g&1)2

(150.0 Bq/g)2
% 0.41462 × (2.0 Bq/g)2

(150.0 Bq/g)2
' 0.005736

which may be rounded to 0.0057. (Note that the relative standard uncertainty of g is approxi-
mately 1.4 %, which is large enough to justify neglecting the small uncertainties of the
masses.)

In fact the standard uncertainty of g calculated in the preceding example may be incomplete. The
true counting efficiency may vary from source to source because of variations in geometry, posi-
tion and other influence quantities not explicitly included in the model. So, the standard uncer-
tainty of g should include not only the standard uncertainty of the estimated mean, as calculated
in the example, but also another component of uncertainty due to variations of the true efficiency
during subsequent measurements. The additional component may be written as gφ, where φ is the
coefficient of variation of the true efficiency. Then the total uncertainty of g is obtained by
squaring the original uncertainty estimate, adding , and taking the square root of the sum.g2φ2

In the example above, the experimental variance of the ratios, Ri, may be used to estimate φ.
Section 18B.2 of Attachment 18B, describes an approach for estimating such �excess� variance
in a series of measurements. When the methods of Section 18B.2 are used with these data, the
resulting estimate of φ is approximately 0.012, or 1.2 %. So, the total uncertainty of g as a
predictor of the counting efficiency for a source prepared and counted at some time in the future
is

Variations in counting efficiency due to source placement should be reduced as much as possible
through the use of positioning devices that ensure a source with a given geometry is always
placed in the same location relative to the detector. If such devices are not used, variations in
source position may significantly increase the measurement uncertainty.
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Calibrating an instrument under conditions different from the conditions under which test sources
are counted may lead to large uncertainties in the sample activity measurements. Source geome-
try in particular tends to be an important factor for many types of radiation counters. Generally,
calibration sources should be prepared with the sizes and shapes of test sources and counted in
the same positions, although in some cases it may be possible to calculate correction factors
which allow one calibration to be used for different geometries. When correction factors are
used, their uncertainties should be evaluated and propagated.

If the efficiency, g, is calculated from a model that includes one of the quantities Xi appearing
elsewhere in the sample activity model, there is a correlation between the measured values of g
and Xi, which should not be ignored. It is often simpler to include the entire expression for g in
the expression for the laboratory sample activity before applying the uncertainty propagation
formula.

EXAMPLE 19.21  Suppose the counting efficiency for a measurement is modeled by the equa-
tion g = Aexp(!BmS), where A and B are calibration parameters and mS is the source mass; and
suppose the chemical yield Y is modeled by mS / mC, where mC is the expected mass at 100 %
recovery. Then the estimated values of the counting efficiency and the yield are correlated,
because both are calculated from the same measured value of the source mass. When the com-
bined standard uncertainty of the sample activity is calculated, the covariance u(g,Y) may be
included in the uncertainty propagation formula (see Section 19.4.4), or the variables g and Y
in the model may be replaced by the expressions Aexp(!BmS) and mS / mC , respectively,
before the sensitivity coefficients are calculated.

In some cases the estimated value of the counting efficiency has no effect on the output estimate
of laboratory sample activity. This happens often in alpha-particle spectrometry, for example,
when isotopic tracers are used. The efficiency estimate is needed to obtain an estimate of the
yield of the chemistry procedure, but the efficiency usually cancels out of the mathematical
model for the laboratory sample activity and its uncertainty is not propagated when determining
the combined standard uncertainty of the activity estimate.

19.5.7  Radionuclide Half-Life

The component of combined standard uncertainty associated with the half-life of a radionuclide
is often negligible in measurements performed by typical radioanalytical laboratories, since the
half-lives of most radionuclides of interest have been measured very accurately and in many
cases decay times are short relative to the half-life (so that the sensitivity coefficient is small).
However, this uncertainty component is also one of the most easily obtained components, since
radionuclide half-lives and their standard uncertainties are evaluated and published by the
National Nuclear Data Center (NNDC) at Brookhaven National Laboratory. The data may be
obtained from the NNDC web site (www.nndc.bnl.gov).
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19.5.8  Gamma-Ray Spectrometry

Most radiochemistry laboratories rely on commercial software for the analysis of gamma-ray
spectra and for the evaluation and propagation of the associated uncertainties. There are a
number of sources of measurement uncertainty in gamma-ray spectrometry, including:

  � Poisson counting uncertainty;
  � Compton baseline determination;
  � Background peak subtraction;
  � Multiplets and interference corrections;
  � Peak-fitting model errors;
  � Efficiency calibration model error;
  � Summing;
  � Density-correction factors; and
  � Dead time.

See Chapter 16 for further discussion of measurement models and uncertainty analysis for
gamma-ray spectrometry, but note that neither Chapter 16 nor this chapter attempts to describe
all of the relevant issues in detail.

19.5.9  Balances

The uncertainty of a balance measurement tends to be small, even negligible, when the balance is
used properly and the mass being measured is much larger than the balance�s readability. How-
ever, the uncertainty may also be difficult to evaluate unless the balance is well maintained and
operated in a controlled environment that protects it from external influences. In particular, drafts
or sudden changes in pressure, temperature or humidity (e.g., opening doors or dishwashers) may
produce spurious errors.

Even if one assumes the balance measurement uncertainty is negligible, there are reasons for per-
forming at least a partial evaluation of the uncertainty. One reason is to confirm the assumption
that the uncertainty is negligible or to determine the range of measurement conditions under
which the assumption is true. For example the uncertainty may be significant if the mass being
weighed is comparable in magnitude to the readability of the balance, or if the mass is calculated
as the difference between two much larger and nearly equal masses that are determined at differ-
ent times and under possibly different environmental conditions (e.g., a planchet and filter
weighed before and after adding a small amount of precipitate to the filter). Another reason is to
establish acceptance criteria for the strict quality control necessary to ensure that the uncertainty
remains negligible.

The uncertainty of a mass measurement generally has components associated with 
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  � Calibration;
  � Linearity;
  � Repeatability;
  � Day-to-day or hour-to-hour variability due to environmental factors; and
  � Air buoyancy.

Other sources of uncertainty may include leveling errors and off-center errors, which should be
controlled. Static electrical charges may also have an effect. For some materials gain or loss of
mass before or after weighing (e.g., by absorption or evaporation of water) may be significant.
Attachment 19E of this chapter describes balance measurement uncertainties in more detail.

Balance manufacturers provide specifications for repeatability and linearity, which are usually of
the same order of magnitude as the balance�s readability, but tests of repeatability and linearity
should also be included in the routine quality control for the balance.

Repeatability is expressed as a standard deviation, sr, and is typically assumed to be independent
of the load. It represents the variability of the result of zeroing the balance, loading and centering
a mass on the pan, and reading the final balance indication. Attachment 19E describes procedures
for evaluating the repeatability experimentally.

The linearity tolerance of a balance, aL, should be specified by the manufacturer as the maximum
deviation of the balance indication from the value that would be obtained by linear interpolation
between the calibration points. Different methods may be used to convert this tolerance to a
standard uncertainty, depending on the form the linearity error is assumed to take. One method,
which is recommended by the Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical
Measurement, is to treat the tolerance, aL, as the half-width of a rectangular distribution and
divide aL by  to obtain the standard uncertainty (Eurachem, 2000). Another method, suggested3
in Attachment 19E of this chapter, is to treat the linearity error as a sinusoidal function of the
load, with amplitude aL. This model requires that aL be divided by  to obtain the standard2
uncertainty. The latter method is used below.

Procedures for evaluating the relative standard uncertainties due to calibration and environmental
factors and for calculating the buoyancy-correction factor and its standard uncertainty are des-
cribed in Attachment 19E.

When one evaluates the uncertainty of a balance measurement that is performed as part of a
typical radiochemical measurement, where the relative combined standard uncertainty of the final
result is usually 5 % or more, often much more, the evaluation may involve only a few
components of the uncertainty. Important components for this purpose include those due to
repeatability, linearity, and environmental factors. Gains or losses of mass may be important in
some cases, but calibration errors and buoyancy effects usually can be ignored, since they tend to
be significant in the mass measurement only when the total uncertainty of the mass is so small
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m ' Inet ' Igross & Itare (19.28)

u(m) ' 2s 2
r % a 2

L % m 2φ2
env (19.29)

u(m) ' 2s 2
r % a 2

L % I 2
tare % I 2

gross φ
2
env (19.30)

that it is negligible in the overall analytical process. The remainder of this section will consider
only the mass uncertainties due to repeatability, linearity, and environmental factors (but see
Attachment 19E).

A typical mass measurement in the laboratory involves separate measurements of a gross mass
and a tare mass. The net mass, m, is determined by subtracting the balance indication for the tare
mass, Itare, from the indication for the gross mass, Igross. That is,

If the tare and gross measurements are made under the same environmental conditions (e.g., at
nearly the same time), the standard uncertainty of m is given (according to the simplified model)
by

where
m is the net mass;
sr is the repeatability standard deviation;
aL is the linearity tolerance; and
φenv is the relative standard uncertainty due to environmental effects.

In some cases the balance is simply zeroed before adding the mass and there is no tare measure-
ment. (Unfortunately the operation of zeroing the balance is often called �taring.�) In such cases
the factor 2 that appears before s r

2 in Equation 19.29 should be omitted.

If tare and gross measurements are made under possibly different environmental conditions (e.g.,
on different days), then the following expression should be used to account for the greater uncer-
tainty due to environmental effects.

EXAMPLE 19.22  The chemical yield (recovery) for a strontium analysis is determined
gravimetrically by weighing a stainless steel planchet before and after evaporating a strontium
nitrate solution onto it, and then dividing the net mass by the predicted mass of strontium
nitrate at 100 % yield. The balance has readability 0.0001 g. According to the manufacturer it
has repeatability 0.00010 g and linearity 0.00020 g, and these values have been reasonably well
confirmed by historical QC data. The analyst has also used balance QC data to determine that
the relative standard uncertainty due to environmental effects is approximately 2 × 10!5 (see
Attachment 19E). Suppose for a particular measurement the tare mass of the planchet is
8.5923 g and the gross mass, which is measured two hours later, is 8.5978 g. Then the net mass
is
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m ' 8.5978 g & 8.5923 g ' 0.0055 g

Since two hours elapse between the tare and gross measurements, Equation 19.30 is used to
calculate the standard uncertainty.

u(m) ' 2s 2
r % a 2

L % I 2
tare % I 2

gross φ
2
env

' 2(0.00010 g)2 % (0.00020 g)2 % (8.5923 g)2 % (8.5978 g)2 (2 × 10&5)2

' 0.00035 g

Thus the relative standard uncertainty is approximately 6 %, which is significant in the determi-
nation of a yield factor.

Note that using the linearity tolerance, 0.00020 g, is rather conservative when the difference
between the gross and tare masses is so small, but the uncertainty component due to linearity is
not dominant in this example. It is actually smaller than the uncertainty due to environmental
effects.

EXAMPLE 19.23  An aliquant of dry soil is subsampled for analysis and weighed on the same
laboratory balance described in the preceding example. The repeatability of the balance is
0.00010 g, the linearity is 0.00020 g, and the relative standard uncertainty due to environ-
mental effects is 2 × 10!5. Suppose the analyst zeros the balance with an empty container on
the pan, adds the aliquant of soil to the container, and reads the final balance indication with-
out a significant time delay. If the final indication is 1.0247 g, then the mass estimate is m =
1.0247 g and its standard uncertainty is

u(m) ' s 2
r % a 2

L % m 2φ2
Env

' (0.00010 g)2 % (0.00020 g)2 % (1.0247 g)2(2 × 10&5)2

' 0.00022 g

So, the relative standard uncertainty is approximately 0.022 %, which is likely to be negligible
in comparison to the uncertainty of subsampling (heterogeneity).

Note that in this example the uncertainty due to environmental effects is the smallest of the
three uncertainty components.
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u(V) ' s 2 %
δ2

cap

6
(19.31)

19.5.10  Pipets and Other Volumetric Apparatus

Generally, a pipet or volumetric flask is used not to measure an existing volume of liquid, but to
obtain a volume of a predetermined nominal size. The nominal value is treated as if it were a
measured value, although it is known before the �measurement.� The true volume is the variable
quantity. Since a volumetric �measurement� of this type cannot be repeated, pipets and flasks are
good examples of measurement systems for which historical data are important for Type A eval-
uations of standard uncertainty.

The uncertainty of a pipet measurement, like that of a balance measurement, is often relatively
small in comparison to other uncertainties in a radiochemical analysis. However, the use of the
wrong type of pipetting device for a particular measurement may result in a relatively large
pipetting uncertainty. For example, one manufacturer�s technical specifications for various
models of pipetting devices list precision values that range from 0.1 % to 5 % and bias tolerances
that range from 0.3 % to 12 %. (Here a �bias tolerance� means an upper bound for the possible
magnitude of the pipet�s unknown systematic error.) So, it is important for the user of a particular
model to know its performance characteristics.

The total uncertainty of a volumetric measurement may include several components, but since
most of the components are negligible in a typical radiochemical measurement process, a very
simple method of evaluation is usually adequate as long as quality control is strict enough to
ensure that the measuring devices and personnel are performing as expected. The method sug-
gested here considers only two components, which are associated with precision and the capacity
(or bias) of the device. Attachment 19E presents more complete methods of evaluation.

Any volumetric measuring device should have a specified tolerance for its capacity, or for the
possible bias of the device (e.g., ASTM E288 and ASTM E969). This tolerance, δcap, may be
assumed to represent the half-width of a rectangular or triangular distribution. Assuming a tri-
angular distribution, as recommended by the Eurachem/CITAC Guide, one evaluates the
uncertainty component of the volume associated with the capacity as  (Eurachem, 2000).δcap / 6

The simplest type of uncertainty evaluation is possible when the manufacturer of a pipetting
device provides specifications for both bias and precision (e.g., Eppendorf® pipettes). In this case
the Type B standard uncertainty of a pipetted volume, V, may be evaluated as

where δcap is the manufacturer�s stated bias tolerance and s is the stated standard deviation.



Measurement Uncertainty

19-53JULY 2004 MARLAP

u(V) '
δ2

cap % (πδmen d 2 / 4)2

6
(19.32)

EXAMPLE 19.24  Suppose the manufacturer of a 5-milliliter pipetting device specifies the
relative bias tolerance to be 0.6 % and the relative precision to be 0.2 %. Then the standard
uncertainty of the volume may be evaluated as

u(V) ' s 2 %
δ2

cap

6
' (5 mL × 0.002)2 %

(5 mL × 0.006)2

6
' 0.0158 mL

The relative standard uncertainty in this case is only about 0.3 %, which might be considered
negligible for many applications.

EXAMPLE 19.25  Suppose the relative bias tolerance for an adjustable-volume pipetting device
is 2.5 % when the device is set at 10 µL, and the relative precision is 0.7 %. Then the standard
uncertainty of a volume delivered at the 10-microliter setting may be evaluated as

u(V) ' s 2 %
δ2

cap

6
' (10 µL × 0.007)2 %

(10 µL × 0.025)2

6
' 0.124 µL

The relative standard uncertainty in this case is about 1.2 %, which would be considered
potentially significant for many types of measurements.

When volumetric glassware is used, or when the manufacturer does not specify the precision, the
uncertainty due to imprecision must be determined by other means. One Type B method of eval-
uating the imprecision for volumetric glassware is to examine the dimensions of the glassware
and use experience and professional judgment to estimate the maximum possible deviation of the
meniscus from the capacity line. If δmen denotes this maximum deviation and d denotes the
internal diameter of the glassware at the capacity mark, the maximum deviation of the volume
from its value at the capacity mark is given by . Note that if δmen and d are expressedπδmen d 2 / 4
in centimeters, this expression gives a value in milliliters. Then, if δmen is assumed to be the half-
width of a triangular distribution, the standard uncertainty of V is given by the following equation

A Type A (experimental) method of evaluation may also be used (see Attachment 19E).
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EXAMPLE 19.26  Suppose the inside diameter of an ASTM Class-A 1-milliliter volumetric
pipet is 0.4 cm, and the analyst estimates δmen, the maximum deviation from the capacity line,
to be 0.075 cm. The capacity tolerance, δcap, is specified by ASTM E969 to be 0.006 mL. So,
the standard uncertainty of the volume (V = 1 mL) is

u(V) '
δ2

cap % (πδmen d 2 / 4)2

6

'
(0.006 mL)2 % π (0.075 cm)(0.4 cm)2 / 4 2

6
' 0.00456 mL

The relative standard uncertainty is approximately 0.5 %.

19.5.11  Digital Displays and Rounding

If a measuring device, such as an analytical balance, has a digital display with resolution δ, the
standard uncertainty of a measured value is at least δ / . This uncertainty component exists2 3
even if the instrument is completely stable. 

A similar Type B method may be used to evaluate the standard uncertainty due to computer
roundoff error. When a value x is rounded to the nearest multiple of 10n, the component of uncer-
tainty generated by roundoff error is 10n / . When rounding is performed properly and x is2 3
printed with an adequate number of figures, this component of uncertainty should be negligible
in comparison to the total uncertainty of x.

EXAMPLE 19.27  The readability of a digital balance is 0.1 g. Therefore, the minimum stan-
dard uncertainty of a measured mass is 0.1 /  = 0.029 g.2 3

EXAMPLE 19.28  A computer printout shows the result x of a measurement as 

3.40E+01 +� 9.2E�02

where the expanded uncertainty is calculated using a coverage factor of 2. Since the coverage
factor is 2, the printout implies the standard uncertainty is 0.092 / 2, or 0.046. However, since
the measured value is rounded to the nearest multiple of 0.1, the standard uncertainty of x
should be increased from 0.046 to
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u(FS) ' 1
mS

&
1

mL

kd 3 (19.33)

.u(x) ' 0.0462 %
0.1
2 3

2
' 0.054

19.5.12  Subsampling

Appendix F of this manual discusses laboratory subsampling. The subsampling of heterogeneous
materials for laboratory analysis increases the variability of the measurement result and thus adds
a component of measurement uncertainty, which is usually difficult to quantify without replicate
measurements. Appendix F summarizes important aspects of the statistical theory of particulate
sampling and applies the theory to subsampling in the radiation laboratory (see also Gy, 1992,
and Pitard, 1993). The mathematical estimates obtained using the theory often require unproven
assumptions about the material analyzed and rough estimates of unmeasurable parameters. How-
ever, in some cases the theory can be used to suggest how subsampling errors may be affected by
either changing the subsample size or grinding the material before subsampling. Of course the
total measurement uncertainty, including components contributed by subsampling, may always
be evaluated by repeated subsampling and analysis.

If subsampling is not repeated, its effects may be represented in the mathematical measurement
model by including an input quantity FS whose value is the ratio of the analyte concentration of
the subsample to that of the total sample. This ratio, which will be called the subsampling factor
(a MARLAP term), appears in the model as a divisor of the net instrument signal and thus is sim-
ilar to the chemical yield, counting efficiency and other sensitivity factors. The value of FS is
estimated as 1, but the value has a standard uncertainty, u(FS), which increases the combined
standard uncertainty of the result. 

Although the component of uncertainty caused by the subsampling of heterogeneous solid matter
may be difficult to estimate, it should not be ignored, since it may be relatively large and in some
cases may even dominate all other components. One may use previous experience with similar
materials to evaluate the uncertainty, possibly with the aid of the information and methods pre-
sented in Appendix F. Appendix F shows how the value of the subsampling uncertainty depends
on the maximum particle diameter, d, the mass of the sample, mL, and the mass of the subsample,
mS. The equation for the standard uncertainty of FS typically has the form

where the value of k depends on the sample. By default, if �hot particles� are not suspected, and
if reasonable precautions are taken either to homogenize (mix) the material or to build the sub-
sample from a large number of randomly selected increments, one may assume k . 0.4 g/cm3, or
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0.0004 g/mm3. If hot particles are suspected, special measurement techniques are probably
required, as described in Appendix F. In this case Equation 19.33 should not be used.

EXAMPLE 19.29

Problem: A 609-gram soil sample is ground until it passes through an ASTM #10 sieve,
which has a mesh size of 2.0 mm. The sample is then homogenized and a 0.7957-gram sub-
sample is removed. Use Equation 19.33 with k = 0.0004 g/mm3 to evaluate the standard
uncertainty of the subsampling factor, u(FS). Repeat the evaluation assuming an ASTM #18
sieve, whose mesh size is 1.0 mm.

Solution: First, assume d = 2.0 mm. Then the subsampling uncertainty is

u(FS) ' 1
0.7957 g

&
1

609 g
(0.0004 g/mm3)(2.0 mm)3 ' 0.063

Now assume d = 1.0 mm. Then

u(FS) ' 1
0.7957 g

&
1

609 g
(0.0004 g/mm3)(1.0 mm)3 ' 0.022

Another alternative is to evaluate the subsampling variance for each type of material and analyte
at a specified maximum particle size, d, and subsample mass, mS. Such an evaluation can be per-
formed experimentally by repeated subsampling and analysis of one or more actual samples, pro-
vided that the concentrations are high enough and the measurement precision good enough to
allow estimation of the variance attributable to subsampling. However, an artificially spiked
sample is usually inappropriate for this purpose, because its heterogeneity differs from that of
real samples. If the precision of the measurement process after subsampling is inadequate, the
subsampling variance may be hard to quantify experimentally.

19.5.13  The Standard Uncertainty for a Hypothetical Measurement

MARLAP�s recommended method selection criteria in Chapter 3 require that a laboratory esti-
mate the standard uncertainty for a measurement of the activity concentration of a radionuclide in
a hypothetical laboratory sample whose true concentration is specified (i.e., the �method uncer-
tainty,� as defined by MARLAP). To estimate the combined standard uncertainty of the meas-
ured concentration, one must obtain estimates for all the input quantities and their standard
uncertainties. All quantities except the gross instrument signal may be measured and the standard
uncertainties evaluated by routine Type A and Type B methods. Alternatively, the values and
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their standard uncertainties may be determined from historical data. The estimate of the gross
signal and its standard uncertainty must be obtained by other means, since the laboratory sample
is only hypothetical. The predicted value of the gross count NS is calculated by rearranging the
equation or equations in the model and solving for NS. The standard uncertainty of the measured
value may then be evaluated either from theory (e.g., Poisson counting statistics), historical data,
or experimentation.

EXAMPLE 19.30  Suppose the mathematical model for a radioactivity measurement is

a '
NS / tS & NB / tB

mS Yg e&λ (tD% tS /2) FS

where
a is the specific activity of the radionuclide in the sample;
NS is the test source count;
NB is the blank count;
tS is the source count time;
tB is the blank count time;
tD is the decay time;
mS is the mass of the test portion;
Y is the chemical yield;
g is the counting efficiency;
λ is the decay constant; and
FS is the subsampling factor.

With values given for the specific activity a; test portion mass mS; blank count NB; count times
tS, tB, and tD; efficiency g ; and yield Y; the source count NS can be predicted. The predicted
value is NS = tS (amSYg exp(!λ(tD + tS / 2) ) + NB / tB). When this value is treated like a meas-
ured value, its estimated variance according to Poisson statistics is u2(NS) = NS. So, assuming
negligible uncertainties in the times tS, tB, and tD, the (first-order) uncertainty propagation for-
mula gives the combined variance of the output estimate, a, as

u 2
c (a) '

u 2(NS) / t 2
S % u 2(NB) / t 2

B

m 2
S Y 2g 2 e�2λ (tD% tS /2)

% a 2 u 2(mS)

m 2
S

%
u 2(Y)

Y 2
%

u 2(g )
g 2

%
u 2(FS)

F 2
S

'
amS Yg e�λ (tD% tS /2)

% NB / tB / tS % NB / t 2
B

m 2
S Y 2g 2 e�2λ (tD% tS /2)

% a 2 u 2(mS)

m 2
S

%
u 2(Y)

Y 2
%

u 2(g )
g 2

%
u 2(FS)

F 2
S
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ATTACHMENT 19A
Statistical Concepts and Terms

19A.1  Basic Concepts

Every laboratory measurement involves a measurement error. Methods for analyzing measure-
ment error are generally based on the theory of random variables. A random variable may be
thought of as the numerical outcome of an experiment, such as a laboratory measurement, which
produces varying results when repeated. In this document a random variable is most often the
result of a measurement. Random variables will usually be denoted in this attachment by upper-
case letters.

Of primary importance in almost any discussion of a random variable is its distribution, or prob-
ability distribution. The distribution of a random variable X describes the possible values of X
and their probabilities. Although the word �distribution� has a precise meaning in probability
theory, the term will be used loosely in this document. This attachment describes several types of
distributions, including the following:

� normal (Gaussian)
� log-normal (or lognormal)
� chi-squared (or chi-square)
� Student�s t
� rectangular (uniform)
� trapezoidal
� exponential
� binomial
� Poisson

Normal distributions are particularly important because they appear often in measurement proc-
esses. The other types listed are also important in this chapter, but only the exponential, binomial
and Poisson distributions are described in the text.

The distribution of X is uniquely determined by its distribution function, defined by F(x) =
Pr[X # x], where Pr[X # x] denotes the probability that X is less than or equal to x. The distribu-
tion function is also called the cumulative distribution function (cdf). If there is a function f(x)
such that the probability of any event a # X # b is equal to Ia

b f(x) dx (i.e., the area under the curve
y = f(x) between x = a and x = b), then X is a continuous random variable and f(x) is a probability
density function (pdf) for X. When X is continuous, the pdf uniquely describes its distribution. A
plot of the pdf is the most often used graphical illustration of the distribution (e.g., see Figures
19.3 and 19.4), because the height of the graph over a point x indicates the probability that the
value of X will be near x.
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FIGURE 19.3 � A symmetric distribution

Two useful numerical characteristics of the distribution of a random variable are its mean and
variance. The mean is also called the expectation or the expected value and may be denoted by
µX or E(X). The mean of a distribution is conceptually similar to the center of mass of a physical
object. It is essentially a weighted average of all the possible values of X, where the weight of a
value is determined by its probability. The variance of X, denoted by σX

2, Var(X), or V(X), is a
measure of the variability of X, or the dispersion of its values, and is defined as the expected
value of (X ! µX)2.

The standard deviation of X, denoted by σX is defined as the positive square root of the variance.
Although the variance appears often in statistical formulas, the standard deviation is a more intui-
tive measure of dispersion. If X represents a physical quantity, then σX has the same physical
dimension as X. The variance σX

2, on the other hand, has the dimension of X squared.

Any numerical characteristic of a distribution, such as the mean or standard deviation, may also
be thought of as a characteristic of the random variables having that distribution.

The mean and standard deviation of a distribution may be estimated from a random sample of
observations of the distribution. The estimates calculated from observed values are sometimes
called the sample mean and sample standard deviation. Since the word �sample� here denotes a
statistical sample of observations, not a physical sample in the laboratory, metrologists often use
the terms arithmetic mean, or average, and experimental standard deviation to avoid confusion.

The mean is only one measure of the center of a distribution (�measure of central tendency�).
Another is the median. The median of X is a value x0.5 that splits the range of X into upper and
lower portions which are equally likely, or, more correctly, a value x0.5 such that the probability
that X # x0.5 and the probability that X $ x0.5 are both at least 0.5. Note that for some distributions
the median may not be unique. Figure 19.4 shows the probability density function of a symmetric
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FIGURE 19.4 � An asymmetric distribution

distribution, whose mean and median coincide, and Figure 19.4 shows the pdf of an asymmetric
distribution, whose mean and median are distinct.

The median of X is also called a quantile of order 0.5, or a 0.5-quantile. In general, if p is a num-
ber between 0 and 1, a p-quantile of X is a number xp such that the probability that X < xp is at
most p and the probability that X # xp is at least p. A p-quantile is often called a 100pth percentile.

Sometimes the standard deviation of a nonnegative quantity is more meaningful when expressed
as a fraction of the mean. The coefficient of variation, or CV, is defined for this reason as the
standard deviation divided by the mean. The coefficient of variation is a dimensionless number,
which may be converted to a percentage. The term �relative standard deviation,� or RSD, is also
used. The term �relative variance� is sometimes used to mean the square of the relative standard
deviation.

The results of two analytical measurements may be correlated when they have measurement
errors in common. This happens, for example, if laboratory samples are analyzed using the same
instrument without repeating the instrument calibration. Any error in the calibration parameters
affects all results obtained from the instrument. This type of association between two quantities X
and Y is measured by their covariance, which is denoted by σX,Y or Cov(X,Y). The covariance of X
and Y is defined as the expected value of the product (X ! µX)(Y ! µY).

Covariance, like variance, is somewhat nonintuitive because of its physical dimension. Further-
more, a large value for the covariance of two variables X and Y does not necessarily indicate a
strong correlation between them. A measure of correlation must take into account not only the
covariance σX,Y, but also the standard deviations σX and σY. The correlation coefficient, denoted
by ρX,Y, is therefore defined as σX,Y divided by the product of σX and σY. It is a dimensionless num-
ber between !1 and +1. The quantities X and Y are said to be strongly correlated when the abso-
lute value of their correlation coefficient is close to 1.



Measurement Uncertainty: Statistical Concepts and Terms

19-66MARLAP JULY 2004

Statistical formulas are generally simpler when expressed in terms of variances and covariances,
but the results of statistical analyses of data are more easily understood when presented in terms
of standard deviations and correlation coefficients.

The lack of a correlation between two quantities X and Y is not a sufficient condition to guarantee
that two values f(X) and g(Y) calculated from them will also be uncorrelated. A stronger condi-
tion called independence is required. For most practical purposes, to say that two quantities are
�independent� is to say that their random components are completely unrelated. A more rigorous
definition appears in the MARLAP glossary.

When the value of a random variable X is used to estimate the value of an unknown parameter θ,
then X is called an estimator for θ. The bias of X is the difference between the mean µX and the
actual value θ. If the bias is zero, then X is said to be unbiased; otherwise, X is biased. Note that
metrologists use the term �bias� with a somewhat different but similar meaning (see Section
19.3.1).

As mentioned in Section 19.4.5.2, even if X is an unbiased estimator for θ, the application of a
nonlinear function, f, to X may produce a biased estimator, f(X), for the value of f(θ). Colloquially
speaking, the function of the mean is different from the mean of the function. For example, if X
is an unbiased estimator for θ, then generally X2 is a biased estimator for θ2.

If the value of X is used not to estimate the value of a parameter but to �predict� the value of
another random variable, Y, whose value oftentimes is not directly observed, then X is called a
predictor for Y.

19A.2  Probability Distributions

This section briefly describes the probability distributions used in Chapter 19.

Distributions may be classified according to their mathematical properties. Distributions in the
same class or family are described by the same mathematical formulas. The formulas involve
numerical parameters which distinguish one member of the class from another.

Two important kinds of distributions are the normal and log-normal, which are observed often in
nature. Other types of distributions important in radioanalysis include the rectangular, binomial,
Poisson, Student�s t, chi-squared and exponential distributions. Poisson distributions in particular
are important in radiation counting measurements and are described in Section 19.5.2.
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17 The number of quantities required to obtain a sum that is approximately normal depends on the distribution of the
quantities. If the distribution is symmetric and mound-shaped like the bell curve, the number may be rather small.
Other distributions such as the log-normal distribution, which is asymmetric, may require a much larger number.
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FIGURE 19.5 � A normal distribution

19A.2.1  Normal Distributions

Many quantities encountered in nature and in the laboratory have distributions which can be de-
scribed by the �bell curve.� This type of distribution, called a normal, or Gaussian, distribution,
is usually a reasonably good model for the result of a radioanalytical measurement. A number of
commonly used methods for evaluating data sets depend on their having an approximately nor-
mal distribution. The probability density function (pdf) for a normal distribution is shown in Fig-
ure 19.5.

A normal distribution is uniquely specified by its mean µ and variance σ2. The normal distribu-
tion with mean 0 and variance 1 is called the standard normal distribution. If X is normally dis-
tributed with mean µ and variance σ2, then (X ! µ) / σ has the standard normal distribution.

The sum of a large number of independent random variables has an approximately normal distri-
bution, even if the individual variables themselves are not normally distributed, so long as the
variance of each term is much smaller than the variance of the sum.17 This is one reason why the
normal distribution occurs often in nature. When a quantity is the result of additive processes
involving many small random variations, the quantity tends to be normally distributed. It is also
true that many other distributions, such as the binomial, Poisson, Student�s t and chi-squared, can
be approximated by normal distributions under certain conditions.

The mean value of a normal distribution is also its median, or the value that splits the range into
equally likely portions.
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FIGURE 19.6 � A log-normal distribution

The value of a normally distributed quantity will be within one standard deviation of the mean
about 68 % of the time. It will be within two standard deviations about 95 % of the time and
within three standard deviations more than 99 % of the time. It is important to remember that
these percentages apply only to normal distributions.

19A.2.2  Log-normal Distributions

The concentration of a contaminant in the environment may not be normally distributed. Instead
it often tends to be log-normally distributed, as shown in Figure 19.6.

By definition, a quantity X has a log-normal (or lognormal) distribution if the logarithm of X is
normally distributed. The product of a large number of independent positive random variables
with similar variances is approximately log-normal, because the logarithm of the product is a
sum of independent random variables, and the sum is approximately normal. The concentration
of a contaminant in the environment tends to be log-normal because it is the result of processes
of concentration and dilution, which are multiplicative.

The distribution of a log-normal quantity X can be uniquely specified by the mean µln X and vari-
ance  of ln X, but more commonly used parameters are the geometric mean µg = exp(µln X)σ2

lnX
and the geometric standard deviation σg = exp(σln X). The geometric mean and geometric standard
deviation are defined so that, if k is a positive number, the probability that X will fall between
µg / σg

k and µgσg
k is the same as the probability that lnX, which is normally distributed, will fall

between µln X ! kσln X and µln X + kσln X. For example, the value of X will be between µg / σg
2 and

µgσg
2 about 95 % of the time.

Although the mean and median of a normal distribution are identical, for a log-normal distribu-
tion these values are distinct. The median, in fact, is the same as the geometric mean µg. As
shown in Figure 19.6, the mean µ is larger than the geometric mean µg . The mean may be cal-
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18 Given the mean µ and standard deviation σ of the log-normal distribution, the geometric mean and geometric
standard deviation may be calculated as  and .µg ' µ2 µ2 % σ2 σg ' exp ln(1 % σ2 / µ2)

19 Note that the symbols µ and σ are often used to denote the mean and standard deviation of ln X, which is normally
distributed, rather than those of X, which is log-normally distributed.
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FIGURE 19.7 � Chi-squared distributions

culated from the geometric mean and geometric standard deviation as shown in Table G.6 in
Appendix G.18,19

The log-normal distribution is important for the interpretation of environmental radiation data,
but it may also have applications in the laboratory. Two possible applications are decay factors
e!λt based on uncertain time measurements and concentrations of contaminants in laboratory
reagents.

19A.2.3  Chi-squared Distributions

If Z1, Z2, �, Zν are independent random variables and each has the standard normal distribution,
the sum Z1

2 + Z2
2 + """ + Zν2 has a chi-squared (or chi-square) distribution with ν degrees of free-

dom. A chi-squared distribution, like a log-normal distribution, is asymmetric and does not in-
clude negative values. For large ν, the chi-squared distribution is approximately normal. Figure
19.7 shows the densities for chi-square distributions with 1, 2, 3 and 10 degrees of freedom.

Chi-squared distributions are used frequently in hypothesis testing, especially for tests of hypoth-
eses about the variances of normally distributed data. Chi-squared distributions also appear in
least-squares analysis (see Attachment 19C).
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FIGURE 19.8 � The t-distribution with 3 degrees of freedom

A sum of independent chi-squared random variables is also chi-squared. Specifically, if X and Y
are independent chi-squared random variables with ν1 and ν2 degrees of freedom, respectively,
then X + Y has a chi-squared distribution with ν1 + ν2 degrees of freedom.

The mean of a chi-squared distribution equals the number of degrees of freedom ν, and the vari-
ance equals 2ν. The median does not have a simple formula.

19A.2.4  T-Distributions

If Z is standard normal, X is chi-squared with ν degrees of freedom, and Z and X are independent,
then  has a Student�s t-distribution with ν degrees of freedom. A t-distribution is sym-Z / X / ν
metric and mound-shaped like a normal distribution and includes both positive and negative val-
ues. Figure 19.8 shows the pdf for a t-distribution with 3 degrees of freedom. A dotted standard
normal curve is also shown for comparison.

When ν is large, the t-distribution is virtually identical to the standard normal distribution.

The median of a t-distribution is zero. The mean is also zero if ν > 1 but is undefined for ν = 1.
The variance equals ν / (ν ! 2) if ν > 2 and is undefined otherwise.

T-distributions are often used in tests of hypotheses about the means of normally distributed data
and are important in statistical quality control. T-distributions are also used in the procedure de-
scribed in Attachment 19D for calculating measurement coverage factors.

If X1, X2, �, Xn are independent and normally distributed with the same mean µ and the same
variance, then the quantity
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Y � X
sX 1 % 1/n

where  is the arithmetic mean and sX is the experimental standard deviation, has a t-distributionX
with n ! 1 degrees of freedom.

If X1, X2, �, Xn, Y are independent and normally distributed with the same mean and variance,
then the quantity

where  is the arithmetic mean of the Xi and sX is the experimental standard deviation, has a t-X
distribution with n ! 1 degrees of freedom.

If Z is standard normal, X is chi-squared with ν degrees of freedom, Z and X are independent, and
δ is a constant, then  has the noncentral t-distribution with ν degrees of freedom(Z % δ) / X / ν
and noncentrality parameter δ (Stapleton, 1995). When the (central) t-distribution is used to test
the null hypothesis that two normal distributions have the same mean, a noncentral t-distribution
describes the distribution of the test statistic if the null hypothesis is false. For example, if X1,
X2, �, Xn, Y are independent and normally distributed with the same variance σ2, and X1, X2, �,
Xn have the same mean µX, then the statistic

Y & X
sX 1 % 1/n

where  is the arithmetic mean of the Xi and sX is the experimental standard deviation, has a t-X
distribution with n ! 1 degrees of freedom if µX = µY, but it has a noncentral t-distribution with
noncentrality parameter

δ ��
µ Y � µX

σ 1 % 1 / n
if µX … µY.

The noncentral t-distribution is useful in the theory of detection limits and appears in Attachment
20A of Chapter 20, �Detection and Quantification Capabilities.�

19A.2.5  Rectangular Distributions

If X only assumes values between a� and a+ and all such values are equally likely, the distribution
of X is called a rectangular distribution, or a uniform distribution (see Figure 19.9).

The mean and median of the rectangular distribution equal the midrange (a� + a+) / 2, and the
standard deviation is (a+ ! a�) / . 2 3
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FIGURE 19.9 � A rectangular distribution
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FIGURE 19.10 � A trapezoidal distribution

Rectangular distributions are frequently used for Type B evaluations of standard uncertainty (see
Sections 19.4.2.2 and 19.5.11).

19A.2.6  Trapezoidal and Triangular Distributions

Another type of bounded distribution used for Type B evaluations of standard uncertainty is a
trapezoidal distribution, which is described in Section 19.4.2.2. If X has a trapezoidal distribu-
tion, it only assumes values between two numbers a� and a+, but values near the midrange
(a� + a+) / 2 are more likely than those near the extremes. The pdf for a symmetric trapezoidal
distribution is shown in Figure 19.10. Asymmetric trapezoidal distributions are not considered
here.

The mean and median of this distribution are both equal to the midrange. If the width of the trap-
ezoid at its base is 2a and the width at the top is 2aβ, where 0 < β < 1, then the standard deviation
is . As β approaches 0, the trapezoidal distribution approaches a triangular distri-a (1 % β2) / 6
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FIGURE 19.11 � An exponential distribution

bution, whose standard deviation is , or (a+ ! a�) / . As β approaches 1, the distributiona / 6 2 6
approaches the rectangular distribution described in Section 19A.2.5.

19A.2.7  Exponential Distributions

The exponential distribution describes the life of an unstable atomic nucleus, whose remaining
life does not depend on its current age. The distribution is described by one parameter, often
denoted by λ, which represents the fractional decay rate. The mean of the distribution is 1 / λ and
its variance is 1 / λ2. The median is the same as the half-life of the radionuclide. The pdf for an
exponential distribution is shown in Figure 19.11.

The exponential distribution also describes waiting times between events in a Poisson process.
For example, if the instrument background for a radiation counter follows the Poisson model
with mean count rate rB (see Section 19A.2.9), the waiting times between counts are
exponentially distributed with parameter rB.

19A.2.8  Binomial Distributions

The binomial distribution, introduced in Section 19.5.2, arises when one counts the outcomes of
a series of n independent and identical experiments, each of which can produce the result �suc-
cess� or �failure.� If the probability of success for each event is p, the number of successes has a
binomial distribution with parameters n and p. Important facts about the binomial distribution
include the following:

  � The distribution is discrete; its only possible values are 0, 1, 2, �, n.
  � The mean of the distribution is np.
  � The variance is np(1 ! p).
  � If n is large and p is not close to 0 or 1, the distribution is approximated well by a normal

distribution.
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Pr[X �� k] �� n
k

p k(1 � p)n�k (19.36)

Pr[X ' n] ' µ ne&µ

n!
(19.37)

Pr[X # n] ' Pr[χ2(2n % 2) $ 2µ] and Pr[X $ n] ' Pr[χ2(2n) # 2µ] (19.38)

χ2
p(ν) . ν 1 &

2
9ν

% zp
2

9ν

3

(19.39)

If X is binomial with parameters n and p, then for k = 0, 1, 2, �, n, the probability that X = k is
given by the equation

where  denotes a binomial coefficient, which equals .n
k

n!
k!(n&k)!

19A.2.9  Poisson Distributions

As explained in Section 19.5.2, the Poisson distribution arises naturally as an approximation to
the binomial distribution when n is large and p is small. Even if n is not large, the variance of the
binomial distribution can be approximated using the Poisson model if p is small. Other important
facts about a Poisson distribution include the following:

� The distribution is discrete; its only possible values are the nonnegative integers
0, 1, 2, �.

� The mean and variance of the distribution are equal.
� If the mean is large, the distribution is well approximated by a normal distribution.
� A sum of independent Poisson random variables is also Poisson.

If X has a Poisson distribution with mean µ, then for any nonnegative integer n, the probability
that X = n is given by

The Poisson distribution is related to the chi-squared distribution, since

where χ2(ν) denotes a chi-squared random variable with ν degrees of freedom. This fact allows
one to use quantiles of a chi-squared distribution to construct a confidence interval for µ based
on a single observation X = n (Stapleton, 1995). Table 19.3 lists 95 % two-sided confidence
intervals for µ some small values of n. For large values of n, the quantiles (2n) and (2n + 2)χ2

p χ2
p

may be approximated using the Wilson-Hilferty formula (NBS, 1964):
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Pr[X # n] . Φ n % 0.5 & µ
µ

(19.40)
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FIGURE 19.12a � Poisson distribution vs. normal distribution, µ = 3

As noted above, when the mean µ is large, the Poisson distribution may be approximated by a
normal distribution. Specifically,

where Φ denotes the distribution function of the standard normal distribution. For most purposes,
this approximation is adequate if µ $ 20.

Figures 19.12a and b show how the normal approximation improves as µ increases from 3 to
100. For any n, the probability Pr[X # n] is represented by the total area of bars 0 to n, while the
value given by the normal approximation is represented by the total area under the dotted curve
to the left of the vertical line at n + 0.5.

n µlower = (2n) µupper = (2n + 2)1
2
χ2

0.025
1
2
χ2

0.975

0 0.000 3.689
1 0.025 5.572
2 0.242 7.225
3 0.619 8.767
4 1.090 10.242
5 1.623 11.668

TABLE 19.3 � 95 % confidence interval for a Poisson mean
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FIGURE 19.12b � Poisson distribution vs. normal distribution, µ = 100
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ATTACHMENT 19B
Example Calculations

19B.1  Overview

The following example shows how to calculate the combined standard uncertainty for a typical
radioanalytical measurement.

19B.2  Sample Collection and Analysis

A soil sample is analyzed for 239/240Pu and 238Pu by alpha-particle spectrometry.

  � The sample is collected on July 10, 1999, at 11:17 am EDT, and shipped to a laboratory for
analysis.

  � The entire laboratory sample is dried, weighed and ground to a maximum particle size of
1.0 mm. The dry weight is approximately 2 kg.

  � The prepared sample is homogenized, and a test portion is removed by increments. The
documented procedure requires a test portion of approximately 0.5 g.

  � The test portion is weighed and the mass is found to be 0.5017 g. The standard uncertainty of
the mass includes contributions from repeatability, linearity, and sensitivity drift.

  � A 1-milliliter aliquant of 242Pu tracer is added to the test portion. The activity concentration of
the tracer solution has previously been measured as 0.0705 Bq/mL with a standard uncer-
tainty of 0.0020 Bq/mL on June 30, 1999, at 11:00 am CDT. The aliquant is dispensed by a
pipet, whose dispensed volume has a combined standard uncertainty previously determined to
be 0.0057 mL.

  � After fusion, dissolution, chemical purification, and coprecipitation, a test source on a
stainless steel planchet is prepared for counting in an alpha-particle spectrometer.

  � The efficiency of the spectrometer for the chosen geometry, which is assumed to be
independent of the particle energy, has previously been measured as 0.2805 with a standard
uncertainty of 0.0045.

  � A blank source is counted in the spectrometer for 60,000 s. The blank consists of a filter
mounted on a planchet in the same geometry as the test source. In the 242Pu region of interest,
2 counts are measured; and in the 238Pu region of interest, 0 counts are measured. Historical
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data for this and similar spectrometers at the laboratory indicate that the background is stable
between measurements.

  � The test source is placed in the spectrometer and counted for 60,000 s, beginning on August
24, 1999, at 4:47 pm CDT. In the 242Pu region of interest, 967 counts are measured; and in the
238Pu region of interest, 75 counts are measured. 

  � It is assumed that there is no detectable plutonium in the reagents; however, a method blank
is analyzed simultaneously using a different spectrometer to check for contamination of
reagents and glassware.

In this example the measurand will be the specific activity of 238Pu in the 2-kilogram sample (dry
weight) at the time of collection.

19B.3  The Measurement Model

The following notation will be used:

mS is the mass of the test portion (0.5017 g)
mL is the mass of the entire laboratory sample (~2000 g)
d is the mesh size of the sieve (1.0 mm)
cT is the tracer activity concentration (0.0705 Bq/mL)
VT is the tracer aliquant volume (1 mL)
tB is the blank count time (60,000 s)
tS is the count time for the test source (60,000 s)
NS is the total count in a region of interest when the source is counted (238Pu or 242Pu)
NB is the count in a region of interest when the blank is counted (238Pu or 242Pu)
R is the fraction of alpha particles with measured energy in the region of interest (238Pu

or 242Pu)
D is the decay-correction factor (238Pu or 242Pu)
g is the alpha-particle counting efficiency
Y is the plutonium chemical yield fraction
FS is the subsampling factor (estimated as 1.00)
a238 is the specific activity of 238Pu in the dried laboratory sample, decay-corrected to the

time of collection

Subscripts will be used to distinguish between quantities associated with particular regions of
interest (238Pu or 242Pu).

The decay-correction factor for either isotope is calculated as follows:
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D ' e&λ tD 1 & e&λ tS

λ tS

where λ is the decay constant (s!1) and tD is the time between collection and the start of the count-
ing measurement (3,911,400 s). Since λtS is small for both isotopes in this example, D may be
approximated accurately by

D ' e&λ (tD% tS /2)

The half-lives of 238Pu and 242Pu are 87.75 a and 375,800 a, respectively. So,

D238 ' exp &ln2
(87.75 a)×(365.2422 d/a)×(86,400 s /d)

3,911,400 s % 60,000 s
2

' 0.9990

and .D242 ' 1.000

Dead time is negligible in this example; so, no distinction is made between the real time and the
live time. If the real time were greater than the live time, the correction for decay during the
counting period would be based on the real time.

The fraction of alpha particles of each isotope actually measured in the nominal region of interest
is estimated to lie between 0.96 and 1.00. A rectangular distribution is assumed, with center at
0.98 and half-width equal to 0.02. Then the Type B standard uncertainties of R238 and R242 are

u(R238) ' u(R242) '
0.02

3
' 0.01155

The chemical yield of plutonium is calculated using the model

Y '
NS,242 / tS & NB,242 / tB

cTVTg R242 D242

Then the following model is used to estimate the measurand.

a238 '
NS,238 / tS & NB,238 / tB

mS Yg R238 D238 FS
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Y '
967 / (60,000 s) & 2 / (60,000 s)

(0.0705 Bq/mL)×(1 mL)×0.2805×0.98×1
' 0.82990

a238 '
75 / (60,000 s) & 0 / (60,000 s)

(0.5017 g)×0.82990×0.2805×0.98×0.9990×1.00
' 0.010932 Bq/g

(or 10.932 Bq/kg)

When values are inserted,

19B.4  The Combined Standard Uncertainty

The efficiency, g, effectively cancels out of the equation for a238, because it is multiplied by the
yield Y and also appears as a factor in the denominator of the expression for Y (see also Section
19.5.6). Therefore, the uncertainty of g has no effect on the uncertainty of a238. When using the
uncertainty propagation formula to calculate the combined standard uncertainty of a238, one might
include a covariance term for u(Y,g) to account for the relationship between the measured values
of Y and g, but it is simpler to treat Yg as one variable. Application of the first-order uncertainty
propagation formula (Section 19.4.3) to the equations above then gives the following:

u 2
c (Yg ) '

u 2(NS,242) / t 2
S % u 2(NB,242) / t 2

B

c 2
T V 2

T R 2
242 D 2

242

% (Yg )2 u 2(cT)

c 2
T

%
u 2(VT)

V 2
T

%
u 2(R242)

R 2
242

u 2
c (a238) '

u 2(NS,238) / t 2
S % u 2(NB,238) / t 2

B

m 2
S (Yg )2 R 2

238 D 2
238

% a 2
238

u 2(mS)

m 2
S

%
u 2(Yg )
(Yg )2

%
u 2(R238)

R 2
238

%
u 2(FS)

F 2
S

All other input estimates are assumed to be uncorrelated.

Note that u2(FS) is the subsampling variance associated with taking a small test portion
(0.5017 g) from a much larger sample (2000 g). The estimation method suggested in Section
19.5.12 will be used here to evaluate u(FS).

u(FS) '
1

mS

&
1

mL

kd 3 where k ' 0.0004 g/mm3

'
1

0.5017 g
&

1
2000 g

(0.0004 g/mm3)(1.0 mm)3

' 0.0282.
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Appendix F provides more information about subsampling errors and methods for estimating
their variances.

The standard uncertainty of the mass of the test portion, mS, is evaluated using the methods de-
scribed in Section 19.5.9. The total uncertainty of mS has components due to repeatability, lin-
earity, and sensitivity drift (environmental factors). Assume the repeatability standard deviation
is 0.0001 g, the linearity tolerance is 0.0002 g, and the relative standard uncertainty due to sen-
sitivity drift is 1 × 10!5. If the balance is zeroed with an empty container on the pan, the soil is
added to the container, and the display is read, then the standard uncertainty of the mass mS is

u(mS) ' (0.0001 g)2 % (0.0002 g)2 % (0.5017 g)2 (1 × 10&5)2 ' 2.2 × 10&4 g

Since extremely low counts are possible, each Poisson counting variance in this example will be
estimated by the number of observed counts plus one (see Section 19.5.2.2 and Section 19D.3 of
Attachment 19D). So, for example, u(NB, 238) equals one, not zero.

Table 19.4 summarizes the input estimates and their standard uncertainties.

Other possible sources of uncertainty in alpha-particle spectrometry measurements include:

INPUT
QUANTITY

INPUT
ESTIMATE

STANDARD
UNCERTAINTY

MEASUREMENT
UNIT

TYPE OF
EVALUATION

mS 0.5017 2.2 × 10!4 g Combined*

cT 0.0705 0.0020 Bq/mL Combined*

VT 1.0000 0.0057 mL Combined*

tB 60,000 Negligible s B
tS 60,000 Negligible s B

NB, 238 0 1 counts B
NB, 242 2 1.73 counts B
NS, 238 75 8.72 counts B
NS, 242 967 31.1 counts B

R238, R242 0.98 0.01155 none B
g 0.2805 0.0045 none Combined*

FS 1.00 0.0282 none B
D238 0.9990 Negligible none B
D242 1.0000 Negligible none B

* �Combined� here means �determined by uncertainty propagation.�

TABLE 19.4 � Input estimates and standard uncertainties
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  � uncertainties in half-lives and decay times;
  � spillover and baseline interferences caused by poor peak resolution;
  � incomplete equilibration of tracer and analyte before chemical separation; and
  � changing instrument background.

These uncertainties are evaluated as negligible in this example. Uncertainties associated with
half-lives and decay times are negligible, because the decay times in the example are much
shorter than the half-lives; but in practice one should confirm that any other uncertainties are
small enough to be neglected.

When values are inserted into the formulas

u 2
c (Yg ) ' 968 / (60,000 s)2 % 3 / (60,000 s)2

(0.0705 Bq/mL)2 ×(1 mL)2 ×0.982 ×12

% (0.82990×0.2805)2 0.00202

0.07052
%

0.00572

12
%

0.011552

0.982

' 0.0001094007

' 0.010462

and

u 2
c (a238) '

76 / (60,000 s)2 % 1 / (60,000 s)2

(0.5017 g)2 ×(0.82990×0.2805)2 ×0.982 ×0.99902

% (0.010932 Bq/g)2 (2.2×10&4)2

0.50172
%

0.010462

(0.82990×0.2805)2
%

0.011552

0.982
%

0.02822

12

' 1.98915 × 10&6 Bq2 /g2

' (0.001410 Bq/g)2

So, uc(a238) = 0.00141  or 1.41 . If the result is to be reported with an expandedBq/g Bq/kg
uncertainty calculated from the combined standard uncertainty uc(a238) and a coverage factor
k = 2, the result should appear as (0.0109 ± 0.0028)  or (10.9 ± 2.8)  (dry weight).Bq/g Bq/kg
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u2(y) ' Mf
Mx

u2(x) Mf
Mx

)

(19.46)

ATTACHMENT 19C
Multicomponent Measurement Models

19C.1  Introduction

In this attachment, the term �multicomponent measurement model� means a mathematical model
with more than one output quantity calculated from the same set of input quantities. One com-
mon application of a multicomponent model is the determination of a calibration curve involving
two or more parameters. In principle, the approach to uncertainty propagation described in Sec-
tion 19.4 applies equally well to single-component or multicomponent models. However, a
straightforward implementation of the uncertainty propagation formula for some multicomponent
models may be tedious unless software for automatic uncertainty propagation is available.

At the time of this writing, the joint working group responsible for the GUM is reported to be
developing additional guidance to deal with multicomponent models, but the guidance is not yet
available.

19C.2  The Covariance Matrix

A multicomponent model is most naturally described in terms of vectors and matrices, and the
remainder of this attachment assumes the reader is familiar with those concepts and with the
notation commonly used to describe them. The single-component model, Y = f(X1,X2,�,XN),
which was used earlier, is now replaced by a multicomponent model, Y = f(X), where X and Y
denote column vectors and f denotes a vector-valued function of X. The input vector, which is
formed from the input estimates, xj, will be denoted by x, and the output vector, which is formed
from the output estimates, yi, will be denoted by y. The estimated variances and covariances of all
the input estimates are arranged in a square matrix, called the covariance matrix and denoted
here by u2(x), whose ijth element equals the covariance u(xi,xj). Application of the covariance
equation in Section 19.4.4 leads to the following expression for the covariance matrix of the out-
put vector, y.

In this equation, Mf / Mx denotes the matrix whose ijth element is Mfi / Mxj.

19C.3  Least-Squares Regression

One application for which specialized multicomponent methods for uncertainty propagation may
be useful is least-squares regression. For example the method of least squares may be used to
find an approximate solution, , of a matrix equation of the form�y
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Ay – b (19.47)

�y ' (A)WA)&1A)Wb (19.48)

u2( �y) ' (A)WA)&1 (19.49)

u2( �y) ' (A)WA)&1 %
M �y
Mz

u2(z) M �y
Mz

)

(19.50)

M �y
Mzj

' (A)WA)&1 MA)

Mzj

W (b & A �y) & A)W MA
Mzj

�y (19.51)

where the components of the vector b have uncertainties. The least-squares solution for this prob-
lem can usually be expressed as

where W denotes a diagonal weight matrix, whose ith diagonal element is the inverse of the var-
iance of bi. If there is no uncertainty in the matrix A, and the elements of b are uncorrelated, then
the covariance matrix for  is given simply by�y

If there are uncertainties in the elements of A, the expression above is incomplete. Suppose the
elements of A are functions of variables z1, z2, �, zr, whose estimated variances and covariances
are available. Arrange these variables, zj, in a column vector, z, and let u2(z) denote the
covariance matrix. If the bi are not correlated with the zj, then a more complete expression for the
covariance matrix of  is the following.�y

The derivative matrix, My� / Mz, which appears above, may be calculated column by column. The
jth column of My� / Mz is given by the formula

where MA / Mzj denotes the matrix obtained from A by differentiating each element with respect
to zj. If the uncertainties in the matrix A are large, even this method of uncertainty propagation
may be inadequate (e.g., see Fuller, 1987).

19C.4  References

Fuller, Wayne A. 1987. Measurement Error Models. John Wiley and Sons, New York, NY.

International Organization for Standardization (ISO). 1995. Guide to the Expression of Uncer-
tainty in Measurement. ISO, Geneva, Switzerland.
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ATTACHMENT 19D
Estimation of Coverage Factors

19D.1  Introduction

Although it is common for laboratories to use a fixed coverage factor such as 2 or 3 when deter-
mining an expanded uncertainty for a measured value, the true coverage probability for the resul-
ting interval may be lower than expected if the standard uncertainties of the input estimates are
determined from evaluations with too few degrees of freedom. This attachment summarizes a
general method presented in Annex G of the GUM for determining appropriate coverage factors
in these circumstances (ISO, 1995). Section 19D.3 applies the method to Poisson counting uncer-
tainties.

19D.2  Procedure

19D.2.1  Basis of Procedure

When one evaluates a parameter, θ, statistically by making a series of n independent, unbiased
measurements under the same measurement conditions and averaging the results, xi, if the results
are approximately normally distributed, a confidence interval for θ may be constructed using the
fact that the quantity (  ! θ) /  has a t-distribution with ν = n ! 1 degrees of freedom. If thex̄ s(x̄)
desired confidence level is p, then the confidence interval is , where t = t(1+p)/2(ν) is thex̄ ± t s(x̄)
(1 + p) / 2-quantile of a t-distribution with ν degrees of freedom. Here,  is the result of thex̄
measurement of θ, and  is its standard uncertainty (Type A). The quantile, t, is the coverages(x̄)
factor that makes the coverage probability equal to p. For smaller values of ν, larger values of t
are necessary to give the same coverage probability, because of the increased variability of the
variance estimator, .s 2(x̄)

The procedure described below is derived by assuming that the output estimate, y, for a more
complex measurement and the combined standard uncertainty, uc(y), can take the place of  andx̄

, respectively, in the confidence interval above; and that the appropriate coverage factor, kp,s(x̄)
can be approximated by a quantile of a t-distribution with an appropriate number of degrees of
freedom. The number of degrees of freedom is determined from the estimated coefficient of vari-
ation of the variance estimator, .u 2

c (y)

19D.2.2  Assumptions

Assume the mathematical model for a measurement is Y = f(X1,X2,�,XN), the input estimates
x1, x2, �, xN are independent, and the output estimate is y = f(x1,x2,�,xN). Also assume that the
combined standard uncertainty of y is not dominated by one component determined from a Type
A evaluation with only a few degrees of freedom or from a Type B evaluation based on a distri-
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20 A more rigorously derived mathematical definition of νi in terms of ∆u(xi) exists, but its use is not warranted
given the usually subjective nature of the estimate of ∆u(xi) and the other approximations involved in the Welch-
Satterthwaite formula.
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u 4
c (y)
ν eff

'j
N

i'1

u 4
i (y)
ν i

or νeff '
u 4

c (y)

j
N

i'1

u 4
i (y)
ν i

(19.52)

ν i '
1
2

u 2(xi)

σ2 u(xi)
'

1
2

∆u(xi)
u(xi)

&2

(19.53)

bution very different from a normal distribution. Then the distribution of the output estimate y
should be approximately normal, and the following procedure may be used to obtain a coverage
factor, kp, for the expanded uncertainty of y that gives a desired coverage probability, p.

19D.2.3  Effective Degrees of Freedom

First compute the effective degrees of freedom of the measurement, νeff, using the Welch-
Satterthwaite formula

Here ui(y) = |Mf / Mxi| u(xi) is the component of the combined standard uncertainty generated by
u(xi). If u(xi) is evaluated by a Type A method, then νi is the number of degrees of freedom for
that evaluation. If u(xi) is evaluated instead by a Type B method, then νi may be defined as

where ∆u(xi) is the estimated standard deviation of the standard uncertainty, u(xi), and σ2(u(xi))
denotes its square. This definition of νi for a Type B evaluation is an approximation based on the
relationship between the number of degrees of freedom for a Type A evaluation and the coeffi-
cient of variation of the uncertainty estimator. In most cases estimation of ∆u(xi) is subjective and
requires professional judgment.20

In some cases one may consider the value of ∆u(xi) for a Type B standard uncertainty to be zero
or negligible, as for example when evaluating the uncertainty associated with rounding a number
(Section 19.5.11) or when the standard uncertainty estimate, u(xi), is very conservative. In such
cases one may assume νi = 4; so, the ith term of the sum appearing in the denominator of the
Welch-Satterthwaite formula vanishes.

If an input estimate, xi, and its standard uncertainty, u(xi), are taken from a calibration certificate,
the effective degrees of freedom for u(xi) may be stated on the certificate. In this case the stated
number of degrees of freedom should be used as νi.
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21 The GUM uses the notation tp(ν) to denote the (1 + p) / 2-quantile of a t-distribution with ν degrees of freedom
(ISO, 1995), but the same notation in most statistical literature denotes the p-quantile (e.g., ISO, 1993). MARLAP
follows the latter convention.
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min
1# i#n

ν i # ν eff #j
n

i'1
ν i (19.54)

kp ' n % 1 & νeff t(1%p) /2(n) % νeff & n t(1%p) /2(n % 1) (19.55)

The number of effective degrees of freedom, νeff, satisfies the following inequalities.

So, νeff is no worse than the worst value of νi and no better than the sum of all the νi. The maxi-
mum (best) value for νeff in Equation 19.54 is attained only if each νi is proportional to ui

2(y). This
fact suggests that, at least for Type A uncertainty components, the fraction of the total uncertainty
evaluation effort spent on a particular component, ui(y), should be based on the anticipated mag-
nitude of ui

2(y).

19D.2.4  Coverage Factor

The coverage factor, kp, is defined to be the (1 + p) / 2-quantile, t(1 + p) / 2(νeff), of a t-distribution
with νeff degrees of freedom.21 Since the calculated value of νeff will generally not be an integer, it
must be truncated to an integer, or else an interpolated t-factor should be used. That is, if n <
νeff < n + 1, then use either kp = t(1 + p) / 2(lνeffm), where l@m denotes the truncation operator, or

The expanded uncertainty Up = kpuc(y) is estimated to have a coverage probability approximately
equal to p.

EXAMPLE 19.31

Problem: Refer to the efficiency-calibration problem presented in Example 19.20 in Section
19.5.6. The efficiency for a radiation counter, g, is calculated using the equation

g ' R
aS

where  (62.1854 s!1@g!1) and its uncertainty (0.2301 s!1@g!1) are determined from 15 replicateR
measurements (14 degrees of freedom), and aS (150.0 ) and its uncertainty (2.0 )Bq/g Bq/g
are obtained from a calibration certificate. The calculated efficiency is 0.4146 and its com-
bined standard uncertainty is 0.005736.
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Assume the certificate states that the number of effective degrees of freedom for u(aS) is 12.5.
Find the effective degrees of freedom for uc(g), the coverage factor, k0.95, that gives 95 %
coverage probability, and the expanded uncertainty, U0.95.

Solution: The component of the combined standard uncertainty of g generated by  isu(R)

uR(g ) ' /000 /000
Mg
MR

u(R) ' 1
aS

u(R) ' 0.2301 s&1 @g&1

150.0 Bq/g
' 0.001534.

The component generated by u(aS) is

uaS
(g ) ' /000 /000

Mg
MaS

u(aS) ' R

a 2
S

u(aS) ' 62.1854 s&1 @g&1

(150.0 Bq/g)2
(2.0 Bq/g) ' 0.0055276.

So, the number of effective degrees of freedom, νeff, for uc(g) is given by

νeff '
u 4

c (g )

u 4
R(g )

νR

%
u 4

aS
(g )

νaS

'
(0.005736)4

0.0015344

15 & 1
%

0.00552764

12.5

. 14.42 .

Since 14.42 is not an integer, an interpolated t-factor may be used (see Table G.2 in Appendix
G). The coverage factor for 95 % coverage probability is

k0.95 ' (15 & 14.42) t0.975(14) % (14.42 & 14) t0.95(15) ' (0.58)(2.145) % (0.42)(2.131) ' 2.139.

So, the expanded uncertainty is

U0.95 ' k0.95 uc(g ) ' (2.139)(0.005736) . 0.012.

19D.3  Poisson Counting Uncertainty

As stated in Section 19.5.2.2, the standard uncertainty in the number of counts, N, observed
during a radiation measurement may often be estimated by u(N) = , according to the PoissonN
counting model. This method of evaluating the standard uncertainty is a Type B method; so, the
effective degrees of freedom ν for the evaluation should be determined from ∆u(N). The standard
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22 Taking the square root of a Poisson random variable is a common variance-stabilizing transformation, as
described in Chapter 20 of Experimental Statistics (NBS, 1963). The stated (slightly conservative) upper bound for
the standard deviation of  is based on calculations performed at the EPA�s National Air and Radiation Environ-N
mental Laboratory, although the same approximate value may be determined by inspecting Figure 20-2 of NBS
(1963). The precise calculation maximizes a function f(x) whose value is the variance of the square root of a Poisson
random variable with mean x. The first derivative of f is positive, decreasing and convex between x = 0 and the
location of the maximum of the function at x = 1.31895; so, Newton�s Method converges to the solution from
below. The maximum value of f is found to be (0.642256)2.
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u(N) ' N and ν ' 2N (19.56)

u(N) ' N % 1 and ν ' 2(N % 1) (19.57)

deviation of  is always less than 0.65.22 If N is greater than about 10, the standard deviation ofN
 is approximately equal to 0.5, and, in this case, Equation 19.53 gives the estimate ν . 2N.N

For smaller values of N, the same approximation is inadequate.

MARLAP recommends that the standard uncertainty, u(N), and degrees of freedom, ν, for a
Poisson measured value, N, be estimated by

or, if very low counts are possible, by

If the expected count is greater than about 10, these formulas tend to give a coverage probability
near the desired probability, p. When the expected count is small, the coverage probability tends
to be greater than p.

Although the estimate u(N) =  may be derived by the Bayesian approach to countingN % 1
statistics assuming a flat prior distribution for the mean count (Friedlander et al., 1981), the
recommended expressions for u(N) and ν in Equation 19.57 have been chosen for the purely
practical reason that they are simple and seem to give satisfactory results. When the count is low,
the assumptions underlying the Welch-Satterthwaite formula are usually violated, because the
combined standard uncertainty is dominated by counting uncertainty, and the distribution of the
count is not normal. However, even in this case, if the formula is used, the recommended expres-
sions for u(N) and ν tend to give conservative results.

EXAMPLE 19.32

Problem: An alpha spectrometer is used to make a 60,000-second blank measurement fol-
lowed by a 60,000-second sample measurement. The observed blank count is 2 and the
observed sample count is 0. The net count rate is modeled as
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RN '
NS

tS

&
NB

tB

where
RN is the net count rate (!3.333 × 10!5 s!1);
NS is the sample count (0);
tS is the sample count time (60,000 s);
NB is the blank count (2); and
tB is the blank count time (60,000 s).

Assume the only source of uncertainty is Poisson counting statistics. Determine the effective
degrees of freedom for uc(RN) and the coverage factor, k0.95, that gives 95 % coverage proba-
bility.

Solution: Since very low counts are possible,

u(NS) ' NS % 1 ' 1 and νNS
' 2(NS % 1) ' 2

u(NB) ' NB % 1 ' 1.732 and νNB
' 2(NB % 1) ' 6

Then

uc(RN) '
u 2(NS)

t 2
S

%
u 2(NB)

t 2
B

'
1

(60,000 s)2
%

3
(60,000 s)2

' 3.333 × 10&5 s&1

uNS
(RN) ' /0000

/0000
MRN

MNS

u(NS) ' 1
tS

NS % 1 '
1

60,000 s
' 1.667 × 10&5 s&1

uNB
(RN) ' /0000

/0000
MRN

MNB

u(NB) ' 1
tB

NB % 1 '
1.732

60,000 s
' 2.887 × 10&5 s&1

So, the number of effective degrees of freedom is

νeff '
u 4

c (RN)

u 4
NS

(RN)

νNS

%
u 4

NB
(RN)

νNB

'
(3.333 × 10&5)4

(1.667 × 10&5)4

2
%

(2.887 × 10&5)4

6

' 8



Measurement Uncertainty: Estimation of Coverage Factors

19-91JULY 2004 MARLAP

Then the coverage factor for a 95 % coverage probability is obtained from Table G.2 in
Appendix G.

k0.95 ' t0.975(8) ' 2.306

Notice that in this example, , but this equality would not hold if the count timesνeff ' νNS
% νNBfor the sample and blank were unequal.

Also notice that the net count rate in this example is negative. Negative results may be com-
mon when environmental samples are analyzed for anthropogenic radionuclides.
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ATTACHMENT 19E
Uncertainties of Mass and Volume Measurements

19E.1  Purpose

This attachment describes methods that may be used to evaluate the measurement uncertainty of
a mass or liquid volume measurement. The first purpose of the attachment is to provide methods
for more complete evaluations of these uncertainties than those presented earlier in Sections
19.5.9 and 19.5.10. A second purpose is to provide additional examples of uncertainty evalua-
tions, and especially Type A evaluations based on historical data, as described in Section
19.4.2.1.

A third purpose of the attachment is to provide information about the sources of error in mass
and volume measurements that may be useful for establishing reasonable quality control criteria.
Even if one assumes that weighing and pipetting errors are negligible, the quality control for bal-
ances and volumetric apparatus should be strict enough to ensure the assumption is true. Some of
the sources of error described below will undoubtedly be considered negligible in many radio-
chemical measurement processes, yet they may be too large to be ignored in a strict quality con-
trol program.

The existence of the attachment is not meant to imply that the uncertainties of mass and volume
measurements tend to be relatively important in a radiochemistry laboratory. In fact the relative
standard uncertainties of mass and volume measurements tend to be small if the measurements
are made properly using appropriate instruments, and they may even be negligible in many cases
when compared to other uncertainties associated with radiochemical analysis (e.g., see Section
19.5.12, �Subsampling�). However, one needs to know the performance limits of any measuring
instrument. For example the measurement uncertainty may actually be relatively large if a labora-
tory balance is used to weigh a mass that is too small for it. The uncertainty may also be large in
some cases if the sensitivity of the balance varies slightly between tare and gross measurements. 

19E.2  Mass Measurements

19E.2.1  Considerations

Regardless of the methods used to evaluate balance measurement uncertainty, the results may be
misleading unless the balance is well maintained and protected from external influences, such as
drafts and sudden changes in pressure, temperature and humidity.

The appropriate method for evaluating the standard uncertainty of a mass measured using a bal-
ance depends on the type of balance, including its principles of calibration and operation, but the
uncertainty of the measured result generally has components associated with balance sensitivity,
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linearity, repeatability, and air buoyancy. Typically, the component associated with sensitivity
includes the uncertainty of calibration and may include variability caused by changing environ-
mental conditions, such as temperature. Other sources of uncertainty may include leveling errors
and off-center errors, which should be controlled. Static electrical charges may also have an
effect. Changes in mass (e.g., by absorption or evaporation of water) may be very significant for
some materials.

19E.2.2  Repeatability

The repeatability of a balance is expressed as a standard deviation and is usually assumed to be
independent of the load. It represents the variability of the result of zeroing the balance, loading a
mass on the pan, and reading the indication.

Balance manufacturers provide specifications for repeatability, but a test of repeatability should
also be part of the routine quality control for the balance (see ASTM E898). The simplest pro-
cedure for evaluating repeatability is to make a series of replicate measurements of a mass stan-
dard under �repeatability conditions.� Repeatability conditions require one balance, one observer,
one measurement location, and repetition during a short time period. For each measurement one
must zero the balance, load the mass standard, and read the balance indication.

EXAMPLE 19.32  Suppose a laboratory balance has readability 0.0001 g, and, according to the
manufacturer, the repeatability is also 0.0001 g. An analyst performs a series of 28 measure-
ments using a 1-gram mass standard to check the repeatability. The results are listed below.

1.0001
1.0002
0.9998
0.9999
0.9998
0.9996
1.0002

0.9996
0.9999
0.9999
0.9999
0.9998
0.9999
0.9999

0.9999
0.9999
1.0000
0.9999
1.0000
0.9999
1.0001

1.0002
1.0001
1.0001
1.0001
0.9998
1.0000
1.0004

The analyst calculates the average, , and standard deviation, s, of these values (Wi) asW
follows.

W '
1
28 j

28

i'1
Wi ' 0.9999607 g

s ' 1
28 & 1 j

28

i'1
(Wi & W)2 ' 0.00018 g

So, the analyst evaluates the repeatability to be 0.00018 g.
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sr '
1

K (J & 1) j
K

k'1
j

J

j'1
(xk, j & x̄k)

2 (19.58)

In this example, since the mass standard is so small, it may not be important that all the meas-
urements be made during a short time period. Environmental factors produce relatively small
day-to-day variability in the balance indication, and this variability may not be observable for a
1-gram load. So, the repeatability might be evaluated using the results of 28 routine quality
control measurements.

A nested experimental design can also be used to evaluate both the repeatability and the day-to-
day (or hour-to-hour) variability due to environmental factors. In this procedure, one makes a
series of replicate measurements with the same mass standard each day for a number of days, or
perhaps in a morning session and afternoon session each day. Ideally, one should use a mass near
the capacity of the balance to obtain the most reliable estimate of day-to-day variability, but
almost any mass in the balance�s range will do for an estimate of repeatability. The repeatability
standard deviation is estimated by

where
sr is the estimated repeatability standard deviation;
J is the number of repetitions per session;
K is the number of sessions;
xk,j is the jth result obtained in the kth session; and

is the average of all the results in the kth session.x̄k

The repeatability standard deviation determined by this method is a Type A standard uncertainty
with K (J ! 1) degrees of freedom.

19E.2.3  Environmental Factors

The correct method for evaluating the balance measurement uncertainty due to environmental
factors depends strongly on the method and frequency of calibration. Some balances, especially
newer models, have internal calibration masses, which allow frequent calibration with only the
push of a button. Other balances use external calibration mass standards and require more care in
the calibration process. Balances of the latter type in many cases are calibrated infrequently. If a
balance is calibrated immediately before a measurement, then the uncertainty due to environ-
mental factors can be considered to be zero. However, if hours or days pass between the time of
calibration and the time of measurement, then this uncertainty component may be significant. For
the remainder of this subsection, the latter case is assumed.
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23 An F-test may be used to test for the presence of variance due to environmental factors. If this variance is zero,
then the quantity , where  denotes the experimental variance of the averages , may be assumed to haveJs 2

x̄ / s 2
r s 2

x̄ x̄ i
an F-distribution with K ! 1 numerator degrees of freedom and K(J ! 1) denominator degrees of freedom.
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s 2
env '

1
K & 1 j

K

k'1
(x̄k & x)2 &

s 2
r

J
(19.59)

φenv '
senv

mcheck
(19.60)

Given the nested experimental data from the preceding section, one may estimate the variability
due to environmental factors (day-to-day or hour-to-hour variability) as follows.23

where
se

2
nv is the estimated variance due to environmental factors and

is the grand average of all the data (the average of the ).x x̄k

If se
2
nv is found to be positive, then senv is estimated by its square root; otherwise, senv is assumed to

be zero. One estimates the relative component of standard uncertainty of a measured mass due to
environmental factors by

where mcheck is the mass of the standard used in the experiment.

If the variability due to environmental factors is large, its magnitude can also be estimated by
weighing a heavy mass standard once per day for a number of days, or perhaps once in the morn-
ing and once in the afternoon of each day. Clearly, the observed variability will include the
effects of both environmental factors and repeatability, but environmental factors presumably
dominate when a heavy mass is weighed, because their effect is proportional to the mass,
whereas the repeatability is essentially constant at all masses. So, the observed variability can be
used as a reasonable estimate of the variability due to environmental factors alone.

EXAMPLE 19.33  Suppose a laboratory balance has readability 0.0001 g, repeatability
0.0001 g, and a capacity of approximately 110 g. An analyst performs QC measurements using
masses of 1, 50, and 100 g. The results obtained using the 100-gram mass standard during a
certain time period are as follows:

99.9992
100.0001
99.9993
99.9989
99.9992

100.0002
99.9989

99.9989
99.9990
99.9988

100.0015
99.9992
99.9997
99.9990

99.9986
100.0002
100.0003
99.9989

100.0012
100.0002
100.0011

100.0008
100.0010
99.9975
99.9981

100.0009
100.0005
99.9991
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φcal ' φ2
env %

s 2
r % δ2

cal / 6

m 2
cal

(19.61)

The average, , and standard deviation, s(Wi), of these values are calculated below.W

W '
1
28 j

28

i'1
Wi ' 99.9996536 g

s(Wi) '
1

28 & 1 j
28

i'1
(Wi & W)2 ' 0.001016 g

Since this standard deviation is much larger than the repeatability, 0.0001 g, essentially all of
the variability may be attributed to environmental factors. The estimate is slightly inflated by
the balance�s repeatability variance, but the difference in this case is only about 0.5 % of the
value shown. So, the relative standard uncertainty due to environmental factors is estimated as

φenv '
0.001016

100
. 1.0 × 10&5

19E.2.4  Calibration

The uncertainty of calibration includes components associated with the mass standard or stan-
dards, repeatability, and variability due to environmental factors.

When a precision mass standard is used for calibration, the standard uncertainty of its mass is
generally negligible. However, the uncertainty may be evaluated if necessary from the specified
mass tolerance. For example, a 100-gram ASTM Class-1 mass standard has a tolerance of
0.00025 g, which may be assumed to represent the half-width of a triangular distribution centered
at zero (ASTM E617). The standard uncertainty may be found by dividing this tolerance by 6
and is approximately 0.00010 g, or 1.0 × 10!6 when expressed in relative terms.

The total relative standard uncertainty of a mass measurement due to calibration may be esti-
mated as follows.

where
φcal is the total relative standard uncertainty of a balance measurement due to calibration;
φenv is the relative standard uncertainty due to environmental factors;
sr is the repeatability standard deviation;
δcal is the tolerance for the mass of the calibration standard; and
mcal is the mass of the standard used for calibration.
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FIGURE 19.13 � Nonlinear balance response curve 

If environmental conditions are not well-controlled, φenv may tend to dominate the other compo-
nents here, since both sr and δcal are much smaller than mcal.

19E.2.5  Linearity

The linearity of a balance should be specified by the manufacturer as a tolerance, aL, which repre-
sents the maximum deviation of the balance indication from the value that would be obtained by
linear interpolation between the calibration points. Routine quality control should ensure that the
linearity remains within acceptable limits.

The Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement recommends
that the linearity tolerance aL be treated as the half-width of a rectangular distribution and that aL
therefore be divided by  to obtain the standard uncertainty (Eurachem, 2000). However, since3
the linearity error is likely to vary as a sinusoidal function of the load, as illustrated in Figure
19.13, the divisor  may be more appropriate. So, the standard uncertainty due to linearity for a2
simple mass measurement may be evaluated as . Whether one uses  or the moreaL / 2 3
conservative value  depends partly on how conservative one believes the estimate of aL to be.2

19E.2.6  Gain or Loss of Mass

When gain or loss of mass is a relevant issue, as for example when the material being weighed is
a volatile liquid or a hygroscopic solid, the mass should be treated as a function of time. One
method of determining this function is to weigh the material at different times, recording both the
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m ' Inet B (19.62)

B '
1 & kA,C / kC

1 & kA,M / kM
(19.63)

time and the observed mass, and fit a line or curve to the resulting data points. One can then cal-
culate the mass at a particular time of interest (e.g., before any gain or loss occurred, or perhaps
during the period when the material was in a radiation counter). If possible, it is better to weigh
the material both before and after the time of interest to avoid extrapolating the curve to points in
time where its accuracy may be unknown. However, in some situations extrapolation may be
necessary, as for example when determining the dry mass of a hygroscopic precipitate.

The standard uncertainty of a mass calculated in this manner includes components for curve-
fitting errors.

19E.2.7  Air-Buoyancy Corrections

Air-buoyancy corrections are not often performed in radiochemistry laboratories, because they
are usually negligible in comparison to the overall uncertainty of the result. However, when the
measurand is the mass itself and not some other quantity such as a radionuclide concentration
whose calculated value depends on the mass, buoyancy corrections may be important. Failure to
correct for air buoyancy when weighing water, for example, introduces a relative error of
approximately !0.1 %, which may be much larger than the standard uncertainty of the un-
corrected mass (e.g., when weighing a gram or more of an aqueous solution on a typical four-
place analytical balance).

When a buoyancy-correction factor is used, the true mass is estimated as follows.

where

and
m is the corrected value for the mass of the material being weighed;
Inet is the net balance indication;
B is the buoyancy-correction factor;
kM is the density of the material being weighed;
kAM is the density of the air at the time the material is weighed;
kC is the density of the calibration mass standard; and
kAC is the density of the air at the time of calibration.

The standard uncertainty of B may be obtained as follows.
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u 2(B)
B 2

'

u 2(kAC)

k2
AC

& 2
u(kAC,kC)
kACkC

%
u 2(kC)

k2
C

kC

kAC

& 1
2

%

u 2(kAM)

k2
AM

& 2
u(kAM,kM)
kAMkM

%
u 2(kM)

k2
M

kM

kAM

& 1
2

(19.64)

kA ' k0
273.15 K

273.15 K % t
p & (0.3783)φeS

101.325 kPa
(19.65)

kA '
ap & φ (bt & c)
273.15 K % t (19.66)

Evaluation of this uncertainty requires estimates of kM, kC, kAM and kAC as well as their standard
uncertainties and covariances. The covariance u(kAC,kC) is usually zero or negligible, and
u(kAM,kM) also is usually negligible if the material being weighed is a solid.

Clearly, u(B) tends to be no more significant in a radiochemical measurement than the factor B
itself is, but it may generate a large fraction of the uncertainty of the mass, m, since the uncer-
tainty of the mass is often tiny.

The density of air (kA) depends on temperature, pressure, and humidity, as shown in the
following equation.

where
kA is the density of air;
k0 is the density of dry air at 0 EC and 101.325 kPa (1 atm);
t is the Celsius temperature;
p is the barometric pressure;
φ is the relative humidity (a fraction between 0 and 1); and
eS is the saturation vapor pressure of water at temperature t.

The vapor pressure, eS, is a nonlinear function of t, but it can be approximated by a linear func-
tion in the range of temperatures typically encountered in the laboratory. When this approxima-
tion is made, the resulting equation for the air density may be written as follows.

where
a   =  3.48589 × 10!3 K @ s2 / m2;
b   =  2.5211151 × 10!4 g / mL; and
c   =  2.0590571 × 10!3 K @ g / mL.
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u(kA) '
a 2 u 2(p) % (bφ % kA)2 u 2(t) % (bt � c)2 u 2(φ)

273.15 K % t
(19.67)

If p is expressed in kPa and t in EC, then Equation 19.66 with the given numerical values of a, b,
and c provides the numerical value of the density, kA, in or .kg/L g/mL

Then the standard uncertainty of kA is given by

The densities of the calibration weight (kC) and of the solid or liquid material being weighed (kM)
also depend on temperature somewhat, but these temperature effects can usually be safely ig-
nored when calculating the uncertainty of the buoyancy-correction factor, since temperature
affects the density of air much more than the density of a solid or liquid.

The effect of pressure on the density of the material being weighed can also usually be neglected.
For most practical purposes, the compressibility of a solid or liquid can be considered to be zero. 

EXAMPLE 19.34  Suppose the density of the weighed material, kM, is 0.5 g/mL with a toler-
ance of 0.2 g/mL, assumed to represent the half-width of a triangular distribution. The density
of the calibration mass standard, kC, is 7.850 g/mL with a tolerance of 0.025 g/mL. Instead of
measuring temperature, pressure and humidity at the time of each measurement, the laboratory
assumes the following nominal values and tolerances:

Temperature (t) (22.5 ± 2.5) EC
Pressure (p) (101.3 ± 2.0) kPa
Relative humidity (φ)  (0.60 ± 0.25)

Recall that
a   =  3.48589 × 10!3 K @ s2 / m2;
b   =  2.5211151 × 10!4 g / mL; and
c   =  2.0590571 × 10!3 K @ g / mL.

Then the air density is calculated as follows.



Measurement Uncertainty: Uncertainties of Mass and Volume Measurements

19-102MARLAP JULY 2004

kAC ' kAM '
ap & φ × (bt & c)

273.15 K % t

'
a × (101.3 kPa) & 0.60 × (b × (22.5EC) & c)

273.15 K % 22.5EC

'
(0.353121 K @ g / mL) & (0.002168 K @ g / mL)

295.65 K

'
0.350953 K @ g / mL

295.65 K

' 1.1871 × 10&3 g/mL

(For convenience, unit symbols will be omitted from intermediate steps in the equations
below.)

If each of the tolerances for t, p, and φ represents the half-width of a triangular distribution,
then

u 2(t) ' 2.52

6
' 1.04 , u 2(p) ' 2.02

6
' 0.667, and u 2(φ) ' 0.252

6
' 0.0104

So, the standard uncertainties of kAC and kAM are

u(kAC) ' u(kAM) '
a 2 u 2(p) % (bφ % kA)2 u 2(t) % (bt & c)2 u 2(φ)

273.15 % t

'
a 2 (0.667) % (b × 0.60 % 1.1871 × 10&3)2 (1.04) % (b × 22.5 & c)2 (0.0104)

273.15 % 22.5

' 1.08 × 10&5 g/mL

Then the buoyancy-correction factor is

B '
1 & kAC / kC

1 & kAM / kM

'
1 & (1.1871 × 10&3 / 7.85)
1 & (1.1871 × 10&3 / 0.5)

' 1.00223

The tolerances for the densities kC and kM are the half-widths of triangular distributions; so,

u 2(kC) ' 0.0252

6
and u 2(kM) ' 0.22

6
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factor, B, and the balance indication, I, because of the influence of environmental factors on the balance�s sensi-
tivity. The correlation is assumed here to be negligible.
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u(m) ' B 2 I 2 (φ2
cal % φ

2
env) %

a 2
L

2
% s 2

r % I 2 u 2(B) (19.68)

The covariances u(kAC, ρC) and u(kAM, kM) are zero in this example. So, the standard uncer-
tainty of B is

u(B) ' B
u 2(kAC) / k2

AC % u 2(kC) / k2
C

(kC / kAC � 1)2
%

u 2(kAM) / k2
AM % u 2(kM) / k2

M

(kM / kAM � 1)2

' 1.00223

(1.08 × 10&5)2

(1.1871 × 10&3)2
%

0.0252 / 6
7.852

7.85
1.1871 × 10&3

� 1
2

%

(1.08 × 10&5)2

(1.1871 × 10&3)2
%

0.22 / 6
0.52

0.5
1.1871 × 10&3

� 1
2

' 3.9 × 10�4

Thus, the buoyancy-correction factor increases the result of the measurement by about 0.2 %
and generates a relative standard uncertainty component of approximately 0.04 %. An exam-
ination of the calculation reveals that the uncertainty of B in this case is dominated by the
uncertainty of ρM, the density of the material being weighed. Note that the uncertainty of B is
very small and would generally be considered negligible in the final result of a radiochemistry
measurement, but it may represent a significant fraction of the uncertainty of the mass meas-
urement.

19E.2.8  Combining the Components

When the balance is used to measure the mass, m, of an object placed on the pan, the mass is
given by m = IB, and its standard uncertainty by

where
m is the buoyancy-corrected mass;
I is the balance indication;
B is the buoyancy-correction factor24;
ncal is the relative standard uncertainty due to calibration;
nenv is the relative standard uncertainty due to environmental factors;
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m ' Inet B

u(m) ' B 2 I 2
net (φ

2
cal % φ

2
env) % a 2

L % 2s 2
r % I 2

net u 2(B)
(19.69)

m ' Inet B

u(m) ' B 2 I 2
netφ

2
cal % (I 2

tare % I 2
gross)φ

2
env % a 2

L % 2s 2
r % I 2

net u 2(B)
(19.70)

aL is the linearity tolerance; and
sr is the repeatability standard deviation.

Often the balance is used to weigh material in a container. The balance is zeroed with the empty
container on the pan and the container is then filled and weighed. In this case the linearity uncer-
tainty component is counted twice, because the linearity error is assumed to vary between the two
loads. (This assumption tends to be conservative when small masses are weighed.) Although the
buoyancy factors for the container and its contents may differ because of the different densities of
the materials, the only value of B that is used is the buoyancy factor for the material being
weighed.

In a third scenario the empty container is weighed, removed from the pan, and then filled with
material. The balance is zeroed again, and the filled container is weighed. In this case both the
linearity and repeatability components of uncertainty must be counted twice, because two distinct
measurements are made. So, the corrected net mass and its standard uncertainty are

where
Inet is the net balance indication (gross ! tare) and
B is the buoyancy factor for the material being weighed.

In a variant of the third scenario, the same weighing procedure is used but there is a significant
time delay between the tare and gross measurements, which allows environmental conditions to
change and the balance sensitivity to drift. In this case the mass and its standard uncertainty
should be calculated as follows.

where Itare and Igross denote the balance indications for the tare and gross measurements, respec-
tively. In this scenario the uncertainty due to environmental effects may be relatively large if the
tare mass is large relative to the net. When this is true, the analyst should consider measuring and
correcting for the sensitivity drift.

19E.3  Volume Measurements

Section 19.5.10 presents a simplified approach to the evaluation of the uncertainty of a volume
measurement, which may be adequate for most purposes in a typical radiochemistry laboratory.
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This section describes experimental methods for evaluating the uncertainty components de-
scribed in Section 19.5.10 and also considers additional uncertainty components.

The density of a liquid depends on its temperature. For this reason, when a volume is measured,
it may be important whether the volume of interest is the volume at the current room tempera-
ture, the long-term mean room temperature, or some other temperature, such as 20 EC. However,
one should determine whether the effect of temperature is really significant for the measurement,
since temperature effects are usually very small.

If the quantity of interest is the volume at room temperature when the volume is measured, the
effects of temperature can usually be ignored. The following discussion assumes that the quantity
of interest is the volume at the mean room temperature and that the actual room temperature may
fluctuate within specified limits.

Three approaches to uncertainty evaluation for volume measurements are discussed. The follow-
ing uncertainty components are considered:

  � The capacity of the measuring device,
  � Repeatability, 
  � The analyst�s bias in using the device (e.g., reading a meniscus), and
  � Temperature effects.

19E.3.1  First Approach

The first approach considered here is appropriate for volumetric glassware. Example 19.26 in
Section 19.5.10 illustrates this approach using only the uncertainty components associated with
capacity and repeatability, which tend to be dominant.

CAPACITY

The capacity of a volumetric pipet or flask (at 20 EC) is generally specified with a tolerance, δcap,
which may be assumed to represent the half-width of a rectangular or triangular distribution (e.g.,
see ASTM E288 and ASTM E969). The Eurachem/CITAC Guide recommends a triangular
distribution, which is based on the assumption that values near the nominal value are more likely
than those near the extremes (Eurachem, 2000). Using a triangular distribution, one evaluates the
uncertainty component of the volume associated with the capacity as .δcap / 6

REPEATABILITY

As described in Section 19.5.10, one may evaluate the uncertainty associated with precision, or
repeatability, for volumetric glassware by obtaining the dimensions of the glassware and esti-
mating the maximum �possible� deviation of the meniscus from the capacity line. ASTM E969,
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δrep '
πδmen d 2

4
(19.71)

�Standard Specification for Glass Volumetric (Transfer) Pipets,� specifies that the internal cross-
section of any Class A or Class B pipet must be circular, and provides ranges of permissible in-
ternal diameters at the capacity mark. If d denotes the actual diameter and δmen denotes the maxi-
mum deviation of the meniscus from the capacity mark, then the maximum deviation of the
volume from its value at the capacity mark is given by

When δmen and d are expressed in centimeters, Equation 19.71 gives the maximum volume devia-
tion, δrep, in milliliters. Then if δmen is assumed to represent the half-width of a triangular distribu-
tion, the standard uncertainty of the volume due to repeatability is , which equalsδrep / 6

.
πδmen d 2

4 6

ANALYST�S BIAS

A similar method can be used to evaluate the uncertainty due to the analyst�s bias in reading the
meniscus. One estimates the maximum possible systematic error in the height of the meniscus,
δsys, and evaluates the associated uncertainty component of the volume as

.
πδsysd

2

4 6

Presumably the value of δsys should be only a fraction of that of δmen; so, this uncertainty should
contribute little to the total uncertainty of a single volume measurement, although it may be
relatively more significant if the glassware is used to dispense several aliquants of liquid in a
single experiment.

TEMPERATURE EFFECTS

Temperature influences a volume measurement through its effects on the density of the liquid
and the capacity of the glassware. Both effects tend to be very small and can often be ignored.

Volumetric glassware is calibrated at 20 EC, but the glassware expands with increasing tempera-
ture. For most purposes the effect of temperature on capacity can be ignored, because it is much
smaller than the effect on the density of the liquid. For example, the capacity of ASTM Type I,
Class A, borosilicate glassware increases by only about 0.001 % for each degree Celsius of tem-



Measurement Uncertainty: Uncertainties of Mass and Volume Measurements

19-107JULY 2004 MARLAP

Vt ' V20 (1 % αV (t & 20 EC)) (19.72)

perature increase. Temperature effects on softer materials, such as plastic, may be more signifi-
cant; however, soft plastic volumetric ware is seldom used when high accuracy is required.

The glassware�s capacity at room temperature may be approximated by

where
t is the room temperature (Celsius);
Vt is the capacity at temperature t;
V20 is the nominal capacity at 20 EC; and
αV is the glassware�s coefficient of thermal cubical expansion.

Table 19.5, which is taken from ASTM E542, lists values of αV for materials often used in volu-
metric ware. The referenced document does not provide the uncertainties of these values, but
relative tolerances of ±10 % (triangular distribution) seem reasonable. The actual uncertainty is
likely to be insignificant to the analyst.

Example 19.35  An analyst uses a 1-milliliter ASTM Type I, Class A borosilicate glass pipet
to dispense an aliquant of a solution when the room temperature is approximately 22.5 EC.
The actual volume dispensed is estimated to be

Vt = (1 mL)(1 + (0.000010 EC!1)(22.5 EC ! 20 EC)) = 1.000025 mL

The analyst considers the temperature correction and its uncertainty in this case to be negli-
gible.

Material Coefficient of cubical expansion, EC!1

Fused silica (quartz)           0.0000016

Borosilicate glass (Type I, Class A)           0.000010

Borosilicate glass (Type I, Class B)           0.000015

Soda-lime glass           0.000025

Polypropylene plastic           0.000240

Polycarbonate plastic           0.000450

Polystyrene plastic           0.000210

TABLE 19.5 � Coefficients of cubical expansion
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V ' Ī Z where Z '
1 & kAC / kC

kM & kAM
(19.73)

The standard uncertainty due to temperature effects on the liquid�s density may be derived from a
temperature range, t ± δtem, and the liquid�s coefficient of thermal expansion, β, at the center of
the range. Assuming a triangular distribution for the temperature with half-width δtem, the relative
standard uncertainty component due to temperature variations is . At typical roomβ δtem / 6
temperatures the value of β for water lies in the range 0.00021 EC!1 to 0.00026 EC!1; so, the total
standard uncertainty due to temperature effects is generally less than 0.05 %, which can often be
considered negligible. Values of β for water may also be applied to dilute aqueous solutions.
Other liquids have different coefficients of thermal expansion.

Example 19.36  An analyst measures a volume of dilute HCl in a laboratory where the tem-
perature range is assumed to be (22.5 ± 2.0) EC. The coefficient of thermal expansion for
water at 22.5 EC is approximately 0.00023 EC!1. So, the relative standard uncertainty of the
volume due to temperature effects on the density of the solution is

0.00023 EC&1 2.0 EC
6

' 0.00019

Again, the analyst considers the uncertainty due to temperature (0.02 %) to be negligible.

19E.3.2  Second Approach

An alternative approach, which is suitable for most varieties of pipets, is to calibrate the device
gravimetrically using an analytical balance. The balance, to be useful, must provide better accu-
racy than the pipet. In particular the balance�s repeatability and linearity tolerances should be
small relative to the tolerances for the pipet. The calibration provides an estimate of the pipet�s
capacity, the standard uncertainty of the capacity, and the variability to be expected during use.
The procedure involves dispensing a series of n pipet volumes of a specified liquid into a con-
tainer and weighing the container and zeroing the balance after each volume is added. Usually
the container must have a small mouth to reduce evaporation. The temperature of the room, the
liquid, and the apparatus involved should be specified, equilibrated, and controlled during the
experiment. The calibration is most often performed using water.

The procedure produces a set of balance indications, Ii , from which the arithmetic mean, , andĪ
the experimental standard deviation, s(Ii), are calculated. To obtain the estimated mean pipet
volume, V, the mean balance indication, , is multiplied by a factor, Z, which equals the quotientĪ
of the buoyancy-correction factor and the density of the liquid at room temperature. So, v is given
explicitly by
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25 The densities in the table are approximated adequately (to six decimal places) by the rational function

k '
0.999924794 % 7.37771644×10&3(t) & 7.52261541×10&6(t 2)

1 % 7.3265954×10&3(t)
where k denotes density in g/cm3 and t denotes temperature in EC. Use of this equation allows calculation of the
coefficient of thermal expansion, β, since β = !(dk / dt) / k.
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and where
kM is the density of the liquid;
kAM is the density of the air at the time the liquid is weighed;
kC is the density of the calibration mass standard for the balance; and
kAC is the density of the air at the time of the balance calibration.

A correction factor for thermal expansion of the pipet may also be included, if desired.

ASTM E542, �Standard Practice for Calibration of Laboratory Volumetric Apparatus,� provides
additional information about the procedure, including tables of values of Z for various condi-
tions. Table 19.6, which is taken from ASTM E542, shows the density of air-free water at var-
ious temperatures.25 Section 19E.2.7 of this attachment describes an equation to calculate the
density of air as a function of temperature, pressure, and humidity.

The volume, V, estimated by the calibration may be substituted for the pipet�s nominal capacity
when the pipet is used later in an analytical measurement. The uncertainty of V as a predictor of
the volume that will be dispensed during a subsequent measurement may be calculated as

Temperature, EC Density, g / cm3 Temperature, EC Density, g / cm3

15 0.999098 26 0.996782

16 0.998941 27 0.996511

17 0.998773 28 0.996232

18 0.998593 29 0.995943

19 0.998403 30 0.995645

20 0.998202 31 0.995339

21 0.997990 32 0.995024

22 0.997768 33 0.994701

23 0.997536 34 0.994369

24 0.997294 35 0.994030

25 0.997043

TABLE 19.6 � Density of air-free water
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u(V) ' Z 2 s 2(Ii) 1 %
1
n

% V 2 φ2
cal % φ

2
env %

β2δ2
tem

3
(19.74)

u(V) ' Zs(Ii) 1 %
1
n

(19.75)

u(V) '
δ2

cap

6
% Z 2 s 2(Ii) %

V 2β2δ2
tem

6
(19.76)

u(V) '
δ2

cap

6
% Z 2 s 2(Ii) (19.77)

where s(Ii) denotes the experimental standard deviation of the n balance indications, ncal and nenv
denote the relative standard uncertainties of mass measurements associated with balance calibra-
tion and environmental factors, respectively (see Section 19E.2), δtem denotes the temperature
tolerance, and β denotes the liquid�s coefficient of thermal expansion. Note that the uncertainty
of the buoyancy-correction factor has been ignored here and the standard uncertainty of Z has
been equated with the component due to thermal expansion of the liquid, which is assumed to be
dominant. The temperature distribution is taken to be triangular. Also note that the correlation
between Z and  induced by temperature effects on both the liquid�s density and the balanceĪ
sensitivity is unknown and has been ignored. Given the typical magnitudes of the various
uncertainty components here, the following uncertainty estimate is likely to be adequate for most
purposes (a pure Type A evaluation with n ! 1 degrees of freedom).

Note that if a different analyst performs the measurement, there may be an additional uncertainty
component associated with the difference in individual techniques.

If the mean volume is within specified tolerances, a slightly simplified approach is possible. The
pipet�s nominal capacity may be used as the volume, V, and the tolerance, δcap, may be used in a
Type B evaluation of standard uncertainty. In this case, the standard uncertainty of V is evaluated
as shown below.

Again, given the typical magnitudes of the uncertainty components, the following simpler ex-
pression is usually adequate.

The experimental procedure outlined above may also be adapted for other volume measuring
devices, including flasks and graduated cylinders.
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u(V) '
δ2

cap

6
% s 2 %

V 2β2δ2
tem

6
(19.78)

19E.3.3  Third Approach

The manufacturers of certain types of pipetting devices (e.g., Eppendorf® pipettes) provide speci-
fications for bias and precision. For these devices, the manufacturer�s specifications for bias and
precision may be assumed, provided the analyst uses the device properly, according to the manu-
facturer�s directions. In this case the Type B standard uncertainty of a pipetted volume, V, is eval-
uated as

where δcap is the manufacturer�s stated bias tolerance, assumed to represent the half-width of a tri-
angular distribution, s is the stated standard deviation, β is the liquid�s coefficient of thermal ex-
pansion, and δtem is the temperature tolerance. This approach has the advantage of simplicity;
however, if the analyst fails to follow the manufacturer�s directions for use, the uncertainty esti-
mate given by Equation 19.78 may be unrealistic. (As in the preceding section, the uncertainty
due to temperature effects can usually be ignored.)

Either of the first two approaches described above may also be used for these devices.
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20  DETECTION AND QUANTIFICATION
CAPABILITIES

20.1 Overview

This chapter discusses issues related to analyte detection and quantification capabilities. The
topics addressed include methods for deciding whether an analyte is present in a sample as well
as measures of the detection and quantification capabilities of a measurement process.

Environmental radioactivity measurements may involve material containing very small amounts
of the radionuclide of interest. Measurement uncertainty often makes it difficult to distinguish
such small amounts from zero. So, an important performance characteristic of an analytical
measurement process is its detection capability, which is usually expressed as the smallest
concentration of analyte that can be reliably distinguished from zero. Effective project planning
requires knowledge of the detection capabilities of the analytical procedures that will be or could
be used. This chapter explains the performance measure, called the minimum detectable con-
centration (MDC), or the minimum detectable amount (MDA), that is used to describe radio-
analytical detection capabilities, as well as some proper and improper uses for it. The chapter
also gives laboratory personnel methods for calculating the minimum detectable concentration.

Project planners may also need to know the quantification capability of an analytical procedure,
or its capability for precise measurement. The quantification capability is expressed as the small-
est concentration of analyte that can be measured with a specified relative standard deviation.
This chapter explains a performance measure called the minimum quantifiable concentration
(MQC), which may be used to describe quantification capabilities. (See Chapter 3 and Appendix
C for explanations of the role of the minimum detectable concentration and minimum quantifi-
able concentration in the development of measurement quality objectives.)

Section 20.2 presents the concepts and definitions used throughout the chapter. The major
recommendations of the chapter are listed in Section 20.3. Section 20.4 presents the mathe-
matical details of calculating critical values, minimum detectable values, and minimum quanti-
fiable values. Attachment 20A describes issues related to analyte detection decisions in low-
background radiation counting and how the issues may be dealt with mathematically.

20.2 Concepts and Definitions

20.2.1  Analyte Detection Decisions

An obvious question to be answered following
the analysis of a laboratory sample is: �Does the
sample contain a positive amount of the
analyte?� Uncertainty in the measured value
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1 Note that in any given situation, only one of the two types of decision error is possible. If the sample does not
contain the analyte, a Type I error is possible. If the sample does contain the analyte, a Type II error is possible.
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often makes the question difficult to answer. There are different methods for making a detection
decision, but the methods most often used in radiochemistry involve the principles of statistical
hypothesis testing.

To �detect� the analyte in a laboratory sample means to decide on the basis of the measurement
data that the analyte is present. The detection decision involves a choice between two hypotheses
about the sample. The first hypothesis is the �null hypothesis� H0: The sample is analyte-free.
The second hypothesis is the �alternative hypothesis� H1: The sample is not analyte-free. The
null hypothesis is presumed to be true unless there is sufficient statistical evidence to the con-
trary. If the evidence is strong enough, the null hypothesis is rejected in favor of the alternative
hypothesis. (See Attachment 3B of Chapter 3 for an introduction to these concepts.)

The methods of statistical hypothesis testing do not guarantee correct decisions. In any hypoth-
esis test there are two possible types of decision errors. An error of the first type, or Type I error,
occurs if one rejects the null hypothesis when it is true. An error of the second type, or Type II
error, occurs if one fails to reject the null hypothesis when it is false. The probability of a Type I
error is usually denoted by α, and the probability of a Type II error is usually denoted by β. In the
context of analyte detection decisions, to make a Type I error is to conclude that a sample
contains the analyte when it actually does not, and to make a Type II error is to fail to conclude
that a sample contains the analyte when it actually does.1

A Type I error is sometimes called a �false rejection� or �false positive,� and a Type II error is
sometimes called a �false acceptance� or �false negative.� Recently the terms �false positive�
and �false negative� have been losing favor, because they can be misleading in some contexts.

The use of statistical hypothesis testing to decide whether an analyte is present in a laboratory
sample is conceptually straightforward, yet the subject still generates confusion and disagreement
among radiochemists and project managers. Hypothesis testing has been used for analyte detec-
tion in radiochemistry at least since 1962. Two influential early publications on the subject were
Altshuler and Pasternack (1963) and Currie (1968). Other important but perhaps less well-known
documents were Nicholson (1963 and 1966). Most approaches to the detection problem have
been similar in principle, but there has been inadequate standardization of terminology and meth-
odology. However, there has been recent progress. In 1995, the International Union of Pure and
Applied Chemistry (IUPAC) published �Nomenclature in Evaluation of Analytical Methods
Including Detection and Quantification Capabilities� (IUPAC, 1995), which recommends a uni-
form approach to defining various performance characteristics of any chemical measurement
process, including detection and quantification limits; and in 1997 the International Organization
for Standardization (ISO) issued the first part of ISO 11843 �Capability of Detection,� a multi-
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part standard which deals with issues of detection in an even more general context of measure-
ment. Part 1 of ISO 11843 includes terms and definitions, while Parts 2�4 deal with meth-
odology. Although members of the IUPAC and ISO working groups collaborated during the
development of their guidelines, substantial differences between the final documents remain.
MARLAP follows both the ISO and IUPAC guidelines where they agree but prefers the
definitions of ISO 11843-1 for the critical value and minimum detectable value, relating them to
the terminology and methodology already familiar to most radiochemists.

In July 2000, ISO also published the first three parts of ISO 11929 �Determination of the Detec-
tion Limit and Decision Threshold for Ionizing Radiation Measurements.� Unfortunately, ISO
11929 is not completely consistent with either the earlier ISO standard or the IUPAC recommen-
dations.

In the terminology of ISO 11843-1, the analyte concentration of a laboratory sample is the state
variable, denoted by Z, which represents the state of the material being analyzed. Analyte-free
material is said to be in the basic state. The state variable cannot be observed directly, but it is
related to an observable response variable, denoted by Y, through a calibration function F, the
mathematical relationship being written as Y = F(Z). In radiochemistry, the response variable Y is
most often an instrument signal, such as the number of counts observed. The inverse, F−1, of the
calibration function is sometimes called the evaluation function (IUPAC, 1995). The evaluation
function, which gives the value of the net concentration in terms of the response variable, is
closely related to the mathematical model described in Section 19.4.2 of Chapter 19.

The difference between the state variable, Z, and its value in the basic state is called the net state
variable, which is denoted by X. In radiochemistry there generally is no difference between the
state variable and the net state variable, because the basic state is represented by material whose
analyte concentration is zero. In principle the basic state might correspond to a positive concen-
tration, but MARLAP does not address this scenario.

20.2.2  The Critical Value

In an analyte detection decision, one chooses between the null and alternative hypotheses on the
basis of the observed value of the response variable, Y. The value of Y must exceed a certain
threshold value to justify rejection of the null hypothesis and acceptance of the alternative: that
the sample is not analyte-free. This threshold is called the critical value of the response variable
and is denoted by yC. 

The calculation of yC requires the choice of a significance level for the test. The significance level
is a specified upper bound for the probability, α, of a Type I error (false rejection). The signifi-
cance level is usually chosen to be 0.05. This means that when an analyte-free sample is
analyzed, there should be at most a 5 % probability of incorrectly deciding that the analyte is
present. In principle other values of α are possible, but in the field of radiochemistry, α is often
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implicitly assumed to be 0.05. So, if another value is used, it should be explicitly stated. A
smaller value of α makes type I errors less likely, but also makes Type II errors more likely when
the analyte concentration in the laboratory sample is positive but near  zero.

The critical value of the analyte concentration, xC , as defined by MARLAP, is the value obtained
by applying the evaluation function, F−1, to the critical value of the response variable, yC. Thus,
xC = F−1(yC). In radiochemistry, when yC is the gross instrument signal, this formula typically
involves subtraction of the blank signal and division by the counting efficiency, test portion size,
chemical yield, decay factor, and possibly other factors. In ANSI N42.23, �Measurement and
Associated Instrument Quality Assurance for Radioassay Laboratories,� the same value, xC, is
called the decision level concentration, or DLC.

A detection decision can be made by comparing the observed gross instrument signal to its
critical value, yC, as indicated above. However, it has become standard practice in radiochemistry
to make the decision by comparing the net instrument signal to its critical value, SC. The net
signal is calculated from the gross signal by subtracting the estimated blank value and any inter-
ferences. The critical net signal, SC, is calculated from the critical gross signal, yC, by subtracting
the same correction terms; so, in principle, either approach should lead to the same detection
decision.

Since the term �critical value� alone is ambiguous, one should specify the variable to which the
term refers. For example, one may discuss the critical (value of the) analyte concentration, the
critical (value of the) net signal, or the critical (value of the) gross signal.

It is important to understand that there is no single equation for the critical value that is appro-
priate in all circumstances. Which equation is best depends on the structure of the measurement
process and the statistics of the measurements. Many of the commonly used expressions are
based on the assumption of Poisson counting statistics and are invalid if that assumption is not a
good approximation of reality. For example, if the instrument background varies between meas-
urements or if it is necessary to correct the result for sample-specific interferences, then expres-
sions for the critical value based on the Poisson model require modification or replacement. If the
analyte is a naturally occurring radionuclide that is present at varying levels in reagents, then a
correction for the reagent contamination is necessary and expressions based on the Poisson
model may be completely inappropriate. In this case the critical value usually must be determined
by repeated measurements of blanks under conditions similar to those of the sample measure-
ment.

Generally, the clients of a laboratory do not have the detailed knowledge of the measurement
process that is necessary to choose a specific equation for the critical value; however, clients may
specify the desired Type I error rate (5 % by default).
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Section 20.4.1 and Section 20A.2 of Attachment 20A provide more information on the calcula-
tion of critical values.

20.2.3  The Blank

In radiochemistry, the response variable is typically an instrument signal, whose mean value
generally is positive even when analyte-free material is analyzed. The gross signal must be cor-
rected by subtracting an estimate of the signal produced by analyte-free material. This estimate
may be obtained by means of any of several types of radiochemical blanks, including blank
sources and reagent blanks (Chapter 18). The radiochemical blank is chosen to provide an
estimate of the mean signal produced by an analyte-free sample, whether the signal is produced
by the instrument background, contaminated reagents, or other causes. The most appropriate type
of blank depends on the analyte and on the method and conditions of measurement. Some
analytes. including many anthropogenic radionuclides, are unlikely to occur as contaminants in
laboratory reagents. For these analytes the radiochemical blank may be only a blank source that
mimics the container, geometry, and physical form of a source prepared from a real sample. On
the other hand, many naturally occurring radionuclides may be present in laboratory water,
reagents, and glassware, and these analytes often require the laboratory to analyze reagent blanks
or matrix blanks to determine the distribution of the instrument signal that can be expected when
analyte-free samples are analyzed.

20.2.4  The Minimum Detectable Concentration

The power of any hypothesis test is defined as the probability that the test will reject the null
hypothesis when it is false.2 So, if the probability of a Type II error is denoted by β, the power is
1 ! β. In the context of analyte detection, the power of the test is the probability of correctly
detecting the analyte (concluding that the analyte is present), which happens whenever the
response variable exceeds its critical value. The power depends on the analyte concentration of
the sample and other conditions of measurement; so, one often speaks of the �power function� or
�power curve.� Note that the power of a test for analyte detection generally is an increasing
function of the analyte concentration � i.e., the greater the analyte concentration the higher the
probability of detecting it.

The minimum detectable concentration (MDC) is the minimum concentration of analyte that
must be present in a sample to give a specified power, 1 ! β. It may also be defined as:

  � The minimum analyte concentration that must be present in a sample to give a specified
probability, 1 ! β, of detecting the analyte; or
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FIGURE 20.1 � The critical net signal, SC, and minimum detectable net signal, SD

  � The minimum analyte concentration that must be present in a sample to give a specified
probability, 1 ! β, of measuring a response greater than the critical value, leading one to
conclude correctly that there is analyte in the sample.

The value of β that appears in the definition, like α, is usually chosen to be 0.05 or is assumed to
be 0.05 by default if no value is specified. The minimum detectable concentration is denoted in
mathematical expressions by xD. In radiochemistry the MDC is usually obtained from the
minimum detectable value of the net instrument signal, SD, which is the smallest mean value of
the net signal at which the probability that the response variable will exceed its critical value is
1 − β. The relationship between the critical net signal, SC, and the minimum detectable net signal,
SD, is shown in Figure 20.1.

Sections 20.4.2 and 20A.3 provide more information about the calculation of the minimum
detectable concentration.

The minimum detectable value of the activity or mass of analyte in a sample is sometimes called
the minimum detectable amount, which may be abbreviated as MDA (ANSI N13.30 and
N42.23). This chapter focuses on the MDC, but with few changes the guidance is also applicable
to any type of MDA.

While project planners and laboratories have some flexibility in choosing the significance level,
α, used for detection decisions, the MDC is usually calculated with α = β = 0.05. The use of
standard values for α and β allows meaningful comparison of analytical procedures.

The MDC concept has generated controversy among radiochemists for years and has frequently
been misinterpreted and misapplied. The term must be carefully and precisely defined to prevent
confusion. The MDC is by definition an estimate of the true concentration of analyte required to
give a specified high probability that the measured response will be greater than the critical
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value. Thus, the common practice of comparing a measured concentration to the MDC to make a
detection decision is incorrect.

There are still disagreements about the proper uses of the MDC concept. Some define the MDC
strictly as an estimate of the nominal detection capability of a measurement process. Those in
this camp consider it invalid to compute an MDC for each measurement using sample-specific
information such as test portion size, chemical yield, and decay factors (e.g., ANSI N42.23). The
opposing view is that the �sample-specific� MDC is a useful measure of the detection capability
of the measurement process, not just in theory, but as it actually performs. The sample-specific
MDC may be used, for example, to determine whether an analysis that has failed to detect the
analyte of interest should be repeated because it did not have the required or promised detection
capability.

Neither version of the MDC can legitimately be used as a threshold value for a detection deci-
sion. The definition of the MDC presupposes that an appropriate detection threshold (i.e., the
critical value) has already been defined.

Many experts strongly discourage the reporting of a sample-specific MDC because of its limited
usefulness and the likelihood of its misuse. Nevertheless, this practice has become firmly estab-
lished at many laboratories and is expected by many users of radioanalytical data. Furthermore,
NUREG/CR-4007 states plainly that �the critical (decision) level and detection limit [MDC]
really do vary with the nature of the sample� and that �proper assessment of these quantities
demands relevant information on each sample, unless the variations among samples (e.g., inter-
ference levels) are quite trivial� (NRC, 1984).

Since a sample-specific MDC is calculated from measured values of input quantities such as the
chemical yield, counting efficiency, test portion size, and background level, the MDC estimate
has a combined standard uncertainty, which in principle can be obtained by uncertainty propa-
gation (see Chapter 19).

In the calculation of a sample-specific MDC, the treatment of any randomly varying but precisely
measured quantities, such as the chemical yield, is important and may not be identical at all lab-
oratories. The most common approach to this calculation uses the measured value and ignores
the variability of the quantity. For example, if the chemical yield routinely varies between 0.85
and 0.95, but for a particular analysis the yield happens to be 0.928, the MDC for that analysis
would be calculated using the value 0.928 with no consideration of the typical range of yields. A
consequence of this approach is that the MDC varies randomly when the measurement is
repeated under similar conditions; or, in other words, the sample-specific MDC with this
approach is a random variable. An MDC calculated in this manner may or may not be useful as a
predictor of the future performance of the measurement process.
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If sample-specific MDCs are reported, it must be clear that no measured value should ever be
compared to an MDC to make a detection decision. In certain cases it may be valid to compare
the sample-specific MDC to a required detection limit to determine whether the laboratory has
met contractual or regulatory requirements (remembering to consider the uncertainty of the MDC
estimate), and in general it may be informative to both laboratory personnel and data users to
compare sample-specific MDCs to nominal estimates, but other valid uses for the sample-
specific MDC are rare.

20.2.5  The MARLAP Approach to Critical Values and Detection Limits

Historically, detection in radiochemistry has often been based on the distribution of the instru-
ment signal obtained by counting analyte-free sources; however, in principle it should be based
on the distribution obtained when analyte-free samples are analyzed, which is often affected by
the processing of samples before instrumental analysis. There is more than one valid approach
for dealing with the effects of sample processing. One approach, which is recommended by
IUPAC (1995), makes the detection decision for a sample using the critical concentration, xC,
which is calculated on the basis of the distribution of the measured analyte concentration, ,�x
under the null hypothesis of zero true concentration in the sample. Similarly, the IUPAC
approach determines the MDC on the basis of the distribution of  as a function of the true�x
concentration.

The approach of this chapter makes detection decisions using the critical net signal, SC, which is
calculated on the basis of the distribution of the net signal, , under the same null hypothesis�S
(zero true concentration in the sample). This approach requires one to consider all sources of
variability in the signal, including any due to sample processing. So, for example, if the presence
of analyte in the reagents causes varying levels of contamination in the prepared sources, this var-
iability may increase the variance of the blank signal and thereby increase the critical net signal.

The MARLAP approach to detection decisions ignores the variability of any term or factor in the
measurement model that does not affect the distribution of the instrument signal obtained from
samples and blanks. For example, measurement errors in the counting efficiency may increase
the variability of the measured concentration, but since they have no effect on the distribution of
the signal, they do not affect the critical value, SC.

The MARLAP approach to the calculation of the MDC also takes into account all sources of
variability in the signal, including those related to sample processing, but it ignores any addi-
tional sources of variability in the measured concentration that do not affect the distribution of
the signal. For example, variability in the true yield from one measurement to another affects the
distribution of  and thereby increases the MDC, but measurement error in the estimated yield�S
typically does not. The estimated yield is applied as a correction factor to ; so, errors in its�S
measurement contribute to the variability of the calculated concentration but do not affect the
variability of  or the true value of the MDC. (On the other hand, yield measurement errors may�S
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make precise determination of the MDC more difficult because they make it harder to determine
the distribution of yields.)

20.2.6  Other Detection Terminologies

Another term frequently used for a measure of detection capability is the �lower limit of detec-
tion,� or LLD (Altshuler, 1963; EPA, 1980; NRC, 1984). Unfortunately this term has been used
with more than one meaning. In Upgrading Environmental Radiation Data (EPA, 1980), the
LLD is defined as a measure of the detection capability of an instrument and is expressed as an
activity. However, the Nuclear Regulatory Commission defines the LLD to be identical to the
MDC when α = β = 0.05 (see, for example, NUREG/CR-4007). It is thus a measure of the detec-
tion capability of a measurement process and is expressed as an activity concentration.

The term �detection limit� is often used as a synonym for �minimum detectable concentration� or
for �minimum detectable value� of any other measured quantity.

Many other terms have been used to describe detection capabilities of measurement procedures.
Most of them will not be listed here, but one term deserves attention because of the possibility of
its confusion with the MDC. The method detection limit, or MDL, is a measure of detection
capability used routinely in the context of analyzing samples for chemical contaminants.

The term �method detection limit� is defined in the Code of Federal Regulations. In Title 40
CFR Part 136, Appendix B, the following definition appears:

The method detection limit (MDL) is defined as the minimum concentration of a
substance that can be measured and reported with 99% confidence that the analyte
concentration is greater than zero and is determined from analysis of a sample in a
given matrix containing the analyte.

The definition is later clarified somewhat by a statement that the MDL �is used to judge the sig-
nificance of a single measurement of a future sample.� Thus, the MDL serves as a critical value;
however, it is also used as a measure of detection capability, like an MDC. Note that, in
MARLAP�s usage, the �method detection limit� is not truly a detection limit.

In March 2003, the Federal Register published a proposed revision of the definition of MDL,
which would make it clear that the MDL serves as a critical value. The proposed new definition
is:

The method detection limit (MDL) is an estimate of the measured concentration at
which there is 99 % confidence that a given analyte is present in a given sample
matrix. The MDL is the concentration at which a decision is made regarding



Detection and Quantification Capabilities

3 The MQC is defined in terms of the relative standard deviation of the estimator � not the relative standard
uncertainty of the measured result. The standard uncertainty is generally an estimate of the standard deviation.

20-10MARLAP JULY 2004

whether an analyte is detected by a given analytical method. The MDL is calcu-
lated from replicate analyses of a matrix containing the analyte and is functionally
analogous to the �critical value� described by Currie (1968, 1995 [IUPAC, 1995])
and the Limit of Detection (LOD) described by the American Chemical Society
(Keith et al, 1980, McDougal et al., 1983).

At the time of this writing, the proposed revision had not been approved.

The similarity between the abbreviations MDC and MDL tends to produce confusion. The term
�method detection limit� is seldom used in the context of radiochemistry except when the analyt-
ical method is one that is commonly used to measure stable elements (e.g., ICP-MS methods), or
when the term is misused by those who are more familiar with the terminology of hazardous
chemical analysis. The confusion is made worse by the fact that �MDL� is sometimes interpreted
by radiochemists as an abbreviation for nonstandard terms such as �minimum detectable level�
and �minimum detectable limit,� the use of which MARLAP strongly discourages.

20.2.7  The Minimum Quantifiable Concentration

The minimum quantifiable concentration, or the minimum quantifiable value of the analyte con-
centration, is defined as the concentration of analyte in a laboratory sample at which the measure-
ment process gives results with a specified relative standard deviation.3 A relative standard devi-
ation of 10 % is usually specified, although other values are possible (see for example MARLAP
Appendix C). Since ISO 11843 addresses detection capability but not quantification capability,
MARLAP follows IUPAC guidance in defining �minimum quantifiable value� (IUPAC, 1995).
IUPAC defines both the minimum quantifiable instrument signal and the minimum quantifiable
concentration, although MARLAP considers only the latter. In this document the minimum quan-
tifiable concentration will be abbreviated as MQC and denoted in equations by xQ.

The term �quantification limit� may be used as a synonym for �minimum quantifiable concentra-
tion� or for �minimum quantifiable value� of any other measured quantity.

Section 20.4.3 provides more information about the calculation of the minimum quantifiable
concentration.

Historically much attention has been given to the detection capabilities of radiochemical meas-
urement processes, but less attention has been given to quantification capabilities, although for
some analytical projects, quantification capability may be a more relevant issue. For example,
suppose the purpose of a project is to determine whether the 226Ra concentration in soil from a
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site is below an action level. Since 226Ra occurs naturally in almost any type of soil, the analyte
may be assumed to be present in every sample, making detection decisions irrelevant. The MDC
of the measurement process obviously should be less than the action level, but a more important
question is whether the MQC is less than the action level (see also Chapter 3 and Appendix C).

20.3 Recommendations

MARLAP makes the following recommendations.

  � When an analyte detection decision is required, it should be made by comparing the gross
signal, net signal, or measured analyte concentration to its corresponding critical value.

  � The laboratory should choose expressions for the critical value and minimum detectable
value that are appropriate for the structure and statistics of the measurement process. The
client may specify the desired Type I and Type II error rates (both 5 % by default) but should
not require particular equations for the critical value or the minimum detectable value
without detailed knowledge of the measurement process.

  � The laboratory should use an appropriate radiochemical blank to predict the signal produced
by a sample that contains no analyte. The most appropriate type of blank for this purpose
depends on the analyte and on the method and conditions of measurement. Depending on the
circumstances, it may be a blank source, reagent blank, or other process blank that accounts
for instrument background as well as any contaminants introduced during the processing of
the sample.

  � The laboratory should confirm the validity of the Poisson approximation for the measurement
process before using an expression for the critical value that is based on Poisson statistics.
When the analyte is present at observable levels in the water, reagents, and lab ware used in
the analysis, the Poisson approximation is often inappropriate. In these cases replicated
blanks may be used to determine the critical value.

  � The laboratory should consider all sources of variance in the instrument signal (or other
response variable) when calculating the critical value and minimum detectable value.

  � The minimum detectable value (MDC or MDA) should be used only as a performance
characteristic of the measurement process.

  � A measurement result should never be compared to the minimum detectable value to make a
detection decision.
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Pr[ �S > SC | X �� 0] �� α (20.1)

  � The laboratory should report each measurement result and its uncertainty as obtained (as
recommended in Chapter 19) even if the result is less than zero. The laboratory should never
report a result as �less than MDC.�

  � The minimum detectable value should not be used for projects where the issue is quantifica-
tion of the analyte and not detection. For these projects, MARLAP recommends the min-
imum quantifiable value as a more relevant performance characteristic of the measurement
process.

MARLAP neither encourages nor discourages the reporting of sample-specific MDCs with
measurement results, so long as the recommendations stated above are followed.

20.4 Calculation of Detection and Quantification Limits

20.4.1  Calculation of the Critical Value

In Section 20.2.2, the critical value of the response variable (or gross instrument signal), denoted
by yC, was defined as the response threshold used to decide whether the analyte concentration of
a laboratory sample is greater than that of the blank. The critical value of the net instrument sig-
nal, denoted by SC, was similarly defined as the net signal threshold that may be used for the
same purpose.

The critical value of the net signal, SC, is defined symbolically by the relation

where Pr[  > SC | X = 0] denotes the probability that the observed net signal, , exceeds its criti-�S �S
cal value, SC, when the true analyte concentration, X, is zero, and α denotes the significance
level, or the specified probability of a Type I error. When the signal assumes only discrete values
(e.g., numbers of counts), there may be no value SC that satisfies Equation 20.1 exactly. The criti-
cal value in this case is defined as the smallest value, SC, such that Pr[  > SC | X = 0] # α.�S

Determining a value of SC which satisfies the definition requires knowledge of the distribution of
the net signal, , under the assumption that the analyte concentration in the laboratory sample is�S
zero (the null hypothesis). The measured net signal may be written as  =  − , where �S �Y �B �Y
denotes the measured gross signal and  denotes the estimated value of the gross signal under�B
the null hypothesis H0. In the absence of interferences, the value of  is usually estimated by�B
measuring one or more blanks using the same procedure used to measure the test sample, and the
distribution of  under H0 is determined from that of . In other cases, however, the value of �Y �B �B
includes estimated baseline and other interferences that are present only during the measurement
of the sample and cannot be determined from the blank.
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SC ' z1&ασ0 (20.2)

σ0 ' σB 1 %
1
n

(20.3)

SC ' z1&ασB 1 %
1
n

(20.4)

Since SC, not yC, has traditionally been used for analyte detection decisions in radiochemistry, the
following presentation focuses primarily on SC. However, conversion of either of these values to
the other is simple, because yC = SC + .�B

20.4.1.1  Normally Distributed Signals

If the distribution of the net signal  under H0 is approximately normal with a well-known stan-�S
dard deviation, σ0, the critical value of  is�S

where z1 − α denotes the (1 − α)-quantile of the standard normal distribution. Table G.1 in Appen-
dix G shows that z1 − α . 1.645 when α = 0.05. Attachment 20A describes the calculation of SC
when the standard deviation is not well-known.

The blank signal, , and its standard deviation, σB, may be estimated by replicate blank measure-�B
ments, but at least 20 measurements are generally needed to ensure that the experimental stan-
dard deviation, sB, is an accurate estimate of σB. (If fewer than 20 measurements are made, see
Attachment 20A.) Given σB, the standard deviation, σ0, of the net signal, , under the�S ' �Y & �B
null hypothesis is  equal to

where n denotes the number of replicate blank measurements. So, the critical net signal is given
by

The preceding equation is valid only if the blank measurements are made in the same manner and
under the same conditions as the sample measurement. In particular, count times should be
identical for the sample and the blanks.

20.4.1.2  Poisson Counting

Radionuclide analyses typically involve radiation counting measurements. Although radiation
counting data never follow the Poisson model exactly, the model may be a useful approximation
in some situations, especially those where the mean blank count is extremely low and the ob-
served count therefore does not follow a normal distribution. At somewhat higher count levels,
features from both models are often used, since the Poisson distribution may be approximated by
a normal distribution. In this case the Poisson model allows one to estimate σ0 without replica-
tion, because one blank measurement provides an estimate of σB.
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�Y ' NS and �B ' NB

tS

tB
(20.5)

�B '
NB

tB

% �RI tS (20.6)

Generally the pure Poisson model is inappropriate when one analyzes for radionuclides that are
found in observable quantities in the water, reagents, and lab ware used in the analysis. Some
radionuclides, such as the naturally occurring isotopes of uranium, thorium, and radium, may be
present as interfering contaminants in the laboratory and require blank corrections that account
for their presence and variability in prepared sources. The variability of these contaminant levels
usually must be determined by replicate measurements. If variability is found, one may either
abandon the Poisson model (in this case see Section 20.4.1.1) or modify it by including addi-
tional non-Poisson variance terms (as shown in the next subsection, �The Poisson-Normal
Approximation,� and in Section 19.5.4 of Chapter 19).

When a test source is analyzed in a radiation counting measurement, either the gross count or the
gross count rate may be considered the instrument signal . In this section, it is assumed that the�Y
instrument signal is the gross count. Therefore, if there are no interferences, the estimated gross
and blank signals are

where
NS is the gross count (source count);
NB is the blank count;
tS is the count time for the test source; and
tB is the count time for the blank.

If there are interferences, the blank signal is

where  denotes the estimated count rate due to the interferences. In either case the net instru-�RI
ment signal is the net count, defined as  = NS − . The net signal is always assumed to have�S �B
zero mean when analyte-free samples are analyzed.

THE POISSON-NORMAL APPROXIMATION

Suppose the distribution of the blank signal can be estimated using the Poisson model, possibly
with an additional small non-Poisson variance component and perhaps a correction for known
interferences, and the instrument background remains at a level where the Poisson distribution is
approximately normal. Then the critical net count is given approximately by the equation



Detection and Quantification Capabilities

20-15JULY 2004 MARLAP

SC ' z1�α tS

RB % RI

tS

%
RB

tB

% ξ2
B % σ2( �RI) (20.7)

SC ' z1�α RB tS 1 %
tS

tB

(20.8)

SC ' z1�α
�RB tS 1 %

tS

tB

(20.9)

�RB '
NB

tB
(20.10)

SC ' z1�α NB

tS

tB

1 %
tS

tB

(20.11)

where
RB is the (true) mean count rate of the blank;
RI is the mean interference count rate;

is the non-Poisson variance in the blank (count rate) correction (see Section 19.5.4 ofξ2
B

Chapter 19); and
σ2( ) is the variance of the estimator for RI .�RI

When there are no interferences and no non-Poisson blank variance, Equation 20.7 becomes

The preceding formula is equivalent to �Currie�s equation� LC = 2.33  when tB = tS, α = 0.05,µB
and the symbols LC and µB are identified with SC and RBtS, respectively (Currie, 1968).

In Equation 20.8, RB denotes the true mean blank count rate, which can only be estimated. In
practice one must substitute an estimated value, B, for RB, as shown in the following equation.�R

Equation 20.9 resembles Equation 20.8 but involves the estimated count rate, , which varies�RB
with repeated measurements. The value of  is usually estimated from the same blank value NB

�RB
used to calculate the net instrument signal. (See Attachment 20A for other possible estimators.)

The resulting formula, shown below, is equivalent to equations published by several authors
(Currie, 1968; Lochamy, 1976; Strom and Stansbury, 1992; ANSI N13.30).
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Note that this is a commonly used expression for the critical net count, but its validity depends on
the assumption of pure Poisson counting statistics. If the variance of the blank signal is affected
by sample processing, interferences, or background instability, then Equation 20.11 may be
invalid (but Equation 20.7 may be appropriate).

If α = 0.05 and tB = tS, Equation 20.11 leads to the well-known expression  for the2.33 NB
critical net count.

When the blank count is high (e.g., 100 or more), Equation 20.11 works well. At lower blank
levels, it can produce a high rate of Type I errors. For example, if the true mean blank count is
0.693, there is a 25 % chance of observing 0 blank counts and a positive number of test source
counts in paired measurements of equal duration. In this case, a critical value calculated by Equa-
tion 20.11 produces Type I errors more than 25 % of the time regardless of the chosen signif-
icance level α. Attachment 20A describes several expressions for SC that have been proposed for
use in situations where the mean blank count is less than 100.

EXAMPLE 20.1

Problem: A 6000-second blank measurement is performed on a proportional counter and
108 beta counts are observed. A test source is to be counted for 3000 s. Estimate the critical
value of the net count when α = 0.05. (See also Example 20.10.)

Solution:

SC ' z1�α NB

tS

tB

1 %
tS

tB

' 1.645 108 3000 s
6000 s

1 %
3000 s
6000 s

' 14.8 net counts.

EXAMPLE 20.2

Problem: Repeat the same problem assuming the blank correction, expressed as a count rate,
has a non-Poisson uncertainty component of ξB = 0.001 s!1 (see Section 19.5.4 of Chapter 19).
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�B �� F(ZB) (20.12)

SC ' z1�α σ
2( �Y0) % σ

2( �B) (20.13)

Solution:

SC ' z1�α NB

tS

tB

1 %
tS

tB

% ξ2
B t 2

S

' 1.645 108 3000 s
6000 s

1 %
3000 s
6000 s

% (0.001 s&1)2 (3000 s)2

' 15.6 net counts.

20.4.1.3  Batch Blanks

Equation 20.11 is derived with the assumption that a detection decision is based on counts ob-
tained from a single radiation counter. When laboratory samples are analyzed in batches, it is
common to analyze a single blank per batch, so that the measurement conditions for the blank
may differ somewhat from those of the samples. In particular, the counts for the laboratory
samples and the blank may be measured using different detectors. If detection in a laboratory
sample is defined relative to a blank counted on a different instrument, Equation 20.11 is in-
appropriate. Even if a single instrument is used, the presence of positive amounts of analyte in
the reagents probably invalidates the (pure) Poisson assumption. In principle,  should be�B
estimated by converting the absolute activity of the blank ZB to an estimated gross count on the
instrument used to measure the laboratory sample. Thus,

where
F is the calibration function for the laboratory sample measurement, whose parameters

include the instrument background, counting efficiency, chemical yield, and any
estimated interferences and

ZB is the estimated absolute activity of the blank.

Then the net count is  =  − , whose critical value is�S �Y �B

where
σ2( 0) is the variance of the gross count  in the test source measurement when the sample�Y �Y

is analyte-free and
σ2( ) is the variance of the estimator .�B �B

If Poisson counting statistics are assumed, then σ2( 0) may be estimated by  (assuming  > 0),�Y �B �B
but estimating σ2( ) still requires a more complicated expression, which may be based on uncer-�B
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Critical Net Activity ' z1&ασblank 1 %
1
n

(20.14)

Pr[ �S # SC | X ' xD] ' β (20.15)

tainty propagation or replication. The variance of  may be difficult to estimate if positive blank�B
values are caused not by the presence of the analyte in reagents but by contaminated glassware or
instruments, which may represent a loss of statistical control of the analytical process.

A valid alternative to the approach just described is to use replicate blank measurements to deter-
mine the distribution of the measured total activity and to calculate the critical net (absolute)
activity using an equation similar to Equation 20.4. The critical net activity is given by

where σblank denotes the standard deviation of the blank activity and n denotes the number of
replicate blank measurements. Then a detection decision is made for a real sample by comparing
the measured net activity to the critical net activity.

This approach should work best if all samples and blanks are analyzed under very similar con-
ditions, using instruments with similar counting efficiencies and background levels. (Each
sample result and each blank result must still be corrected for instrument background.) If the
instruments are significantly different, special care may be needed to ensure that the replicate
blank measurements are made using all the available instruments and that samples are assigned
to instruments randomly so that the variance of the blank results is similar to the variance ob-
served when analyte-free samples are analyzed.

20.4.2  Calculation of the Minimum Detectable Concentration

The minimum detectable concentration (MDC) is defined as the concentration of analyte xD that
must be present in a laboratory sample to give a specified probability, 1 − β, of obtaining a meas-
ured response greater than its critical value, leading one to conclude correctly that there is analyte
in the sample. In other words, the MDC is the analyte concentration at which the type II error rate
is β.

The MDC may also be defined as the analyte concentration xD that satisfies the relation

where the expression Pr[  # SC | X = xD] is read as �the probability that the net signal  does not�S �S
exceed its critical value SC when the true concentration X is equal to xD.�

The MDC is often used as a performance measure for an analytical process for the purpose of
comparing different analytical procedures or evaluating a laboratory�s capabilities against speci-
fied requirements. The calculation of the �nominal� MDC is complicated by the fact that some
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Pr[ �S # SC | S ' SD ] ' β (20.16)

Pr[ �S # SC | X ' SD / A] ' β (20.17)

input quantities in the mathematical model, such as interferences and the chemical yield, which
have a substantial impact on the MDC, may vary significantly from measurement to measure-
ment. Other quantities that may have similar effects include the decay time, counting efficiency,
and instrument background. Because of these variable quantities, determining the value of xD that
satisfies Equation 20.15 in practice may be difficult. One common approach to this problem is to
make conservative choices for the values of the variable quantities, which tend to increase the
value of xD .

The MDC is also commonly used in radiochemistry to describe the detection capability of the
analytical process as implemented in a particular instance. In this case, the need for conservative
choices is reduced. Instead, the measured values of the variable quantities may be used. How-
ever, since the measured values have uncertainties, their uncertainties contribute to a combined
standard uncertainty in the calculated value of xD. To ensure compliance with regulatory or
contractual requirements, an uncertainty interval or conservative upper bound for xD may still be
useful (see NRC, 1984).

20.4.2.1  The Minimum Detectable Net Instrument Signal

The traditional method for calculating the MDC involves first calculating the minimum detect-
able value of the net instrument signal and then converting the result to a concentration using the
mathematical measurement model. The minimum detectable value of the net instrument signal,
denoted by SD, is defined as the mean value of the net signal that gives a specified probability,
1 ! β, of yielding an observed signal greater than its critical value SC. Thus,

where S denotes the true mean net signal.

In radiochemistry the mean net signal, S, is usually directly proportional to X, the true analyte
concentration in the sample. So, there is a �sensitivity� constant, A, such that S = AX. The
constant A typically is the mean value of the product of factors such as the source count time,
decay-correction factor, yield, counting efficiency, and test portion size (e.g., mass or volume).
Its value in some cases may be sample-dependent, but it is essentially independent of the analyte
concentration over a wide range of values. Combining Equation 20.16 with the relation S = AX
gives

A comparison of Equation 20.17 to Equation 20.15, the defining relation of the minimum detec-
table concentration, xD, shows that
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A ' tS µYµV µg µD µFS (20.19)

SD ' SC % z1&β σ
2( �S | S ' SD) (20.20)

xD '
SD

A
(20.18)

The preceding equation is only true if all sources of variability are accounted for when determin-
ing the distribution of the net signal, . If sample-processing effects are ignored, the expression�S
SD / A may underestimate the MDC. Note that ensuring the MDC is not underestimated also re-
quires that the value of A not be overestimated.

Certain variations of this procedure for calculating SD and xD may also be useful. As an example,
suppose

where
tS the source count time;
µY the mean chemical yield;
µV the mean test portion size (mass or volume);
µg the mean counting efficiency;
µD the mean decay-correction factor; and

the mean �subsampling factor,� defined in Chapter 19 as the ratio of analyte concen-µFS tration in a subsample to that in a sample (  is assumed to be 1).µFS

Much of the guidance given later for calculating SD presumes that the distribution of the signal is
normal, but the distribution tends not to be normal if the true yield (Y), test portion size (V),
counting efficiency (g), decay-correction factor (D), or subsampling factor (FS) is not normally
distributed, or if the total relative variance of the product of these factors is large. For example,
suppose the yield and decay factor vary over large ranges and are not normally distributed but the
other factors are either constant or approximately normal. Then a reasonable method of calcu-
lating xD is to ignore the variances of Y and D when calculating SD but to compensate for their
omission by replacing µYµD in the expression for the sensitivity factor, A, by a lower value, such
as the β-quantile of the historical distribution of YD (i.e., the 5th percentile when β = 0.05). In
general, the variance of any or all of the factors may be ignored if a sufficiently conservative
value is substituted for the mean value of the product of those factors when estimating the
sensitivity factor, A.

20.4.2.2  Normally Distributed Signals

If the net signal, , is normally distributed and its estimated standard deviation, σ0, under H0 is�S
well-known, the critical value of  is SC = , as previously noted. Then the minimum�S z1&ασ0
detectable net signal, SD, is determined implicitly by the equation
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σ2( �S) ' aS 2 % bS % c (20.21)

SD '
1
Iβ

SC %
z 2

1�βb
2

% z1�β bSC %
z 2

1�βb
2

4
% aS 2

C % Iβc (20.22)

SD '
bz 2

1&β % 2SC

1 & z 2
1&βa

(20.23)

φ2(F1 F2 @@@FN) ' (1 % φ2(F1))(1 % φ2(F2)) @@@ (1 % φ2(FN)) & 1 (20.24)

where σ2(  | S = SD) denotes the variance of the measured signal, , when the true mean signal,�S �S
S, equals SD. If the function σ2(  | S = SD) is constant, Equation 20.20 gives the value of SD

�S
immediately, but typically σ2(  | S = SD) is an increasing function of SD.�S

If the function σ2(  | S = SD) has a simple form, it may be possible to transform Equation 20.20�S
by algebraic manipulation into an explicit formula for SD. For example, the variance of  often�S
has the form

where S denotes the true mean net signal and the constants a, b, and c do not depend on S (see
Section 20.4.2.3, �Poisson Counting�). In this case the minimum detectable net signal is given by

where Iβ = 1 − . When α = β, the preceding equation can be simplified to the following.z 2
1�βa

In Equations 20.21 and 20.22, the constant c equals , the variance of the net signal, , whenσ2
0

�S
analyte-free samples are analyzed. If Poisson counting statistics are assumed (possibly with other
sources of variance) and the signal S is the net count, as defined earlier, the constant b usually
equals 1. In some situations, such as alpha-counting 222Rn and its short-lived progeny in an alpha
scintillation cell, a different value of b may be needed because of the different counting statis-
tics.4

For typical radiochemistry measurement models, the value of the constant a is the relative vari-
ance (squared coefficient of variation) of the overall sensitivity, which is the product of factors
such as the count time, yield, counting efficiency, and subsampling factor. In general the relative
variance of a product of independent positive factors F1, F2, ..., FN  is given by

where n2 denotes relative variance, although an adequate approximation is usually given by



Detection and Quantification Capabilities

5 Fixed-point iteration, or functional iteration, is the term for a general technique for solving an equation of the form
x = f(x). The iteration produces a sequence x0, x1, x2, ..., where xn + 1 = f(xn). Under certain conditions, the sequence
converges to a fixed point of f, where f(x) = x. Newton�s Method for finding a zero of a function g(x) is one example
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φ2(F1 F2 @@@FN) . φ2(F1) % φ
2(F2) % @@@ % φ2(FN) (20.25)

when each coefficient of variation, n(Fi), is small. So, if the coefficients of variation of the yield,
counting efficiency, subsampling factor, and other such factors are known, the value of a can be
calculated.

EXAMPLE 20.3

Problem: Suppose the sensitivity is the product of the yield (Y), counting efficiency (g), test
portion size (V), count time (tS), and subsampling factor (FS), and that essentially all of the
variance of this product is generated by the variances of the yield and subsampling factor.
Assume the coefficients of variation of these two factors are

n(Y) = 0.06
n(FS) = 0.03

Assume the counts produced by the net sample activity follow Poisson counting statistics, and
assume that , the variance of the net count observed when analyte-free samples are ana-σ2

0
lyzed, equals 209. Determine the values of the constants a, b, and c such that σ2( �S) '

.aS 2 % bS % c

Solution: The value of a is determined using Equation 20.24, as follows:

a ' φ2(YFS) ' (1 % φ2(Y))(1 % φ2(FS)) & 1
' (1 % 0.062)(1 % 0.032) & 1
' 0.0045

The value of b is 1, because Poisson counting statistics are assumed. The value of c equals ,σ2
0

or 209. So, the variance of the net signal, , is given by the equation�S

σ2( �S) ' (0.0045 × S 2) % S % 209

ITERATIVE METHODS

If Equation 20.20 cannot be transformed algebraically, an iterative procedure, such as fixed-point
iteration, may be used to solve the equation for SD. An outline of fixed-point iteration is shown
below.5
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1. Initially calculate SD = SC + z1&β σ
2( �S | S ' SC) (using S = SC)

2. repeat loop (Lines 3�4)

3.      Set h = SD

4.      Recalculate SD = SC + z1&β σ
2( �S | S ' h) (using S = h)

5. until |SD − h | is sufficiently small

6. output the solution SD

In many cases, one iteration of the loop (Lines 3�4) provides an adequate approximation of SD. In
almost all cases, repeated iteration produces an increasing sequence of approximations con-
verging upward to the solution; so, the stopping condition at Line 5 may be replaced by
�until SD # h� to obtain full machine precision in the result.

EXAMPLE 20.4

Problem: Assume the variance of the net signal, , is given by�S

σ2( �S) ' (0.0045 × S 2) % S % 209

where 0.0045 is the value of the constant a determined in Example 20.3, assuming a 3 % coef-
ficient of variation in the subsampling factor and a 6 % coefficient of variation in the yield. Let
α = β = 0.05. The critical net signal, SC, is calculated as follows.

SC ' z1&α σ
2( �S | S ' 0) ' 1.645 209 ' 23.78

Use fixed-point iteration to calculate SD.

Solution: The algorithm produces a sequence of approximations.

SD,0 ' 23.78 % 1.645 σ2( �S | S ' 23.78) ' 49.02

SD,1 ' 23.78 % 1.645 σ2( �S | S ' 49.02) ' 50.75

SD,2 ' 23.78 % 1.645 σ2( �S | S ' 50.75) ' 50.88
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6 Some references use the value 3 instead of  in this formula. A straightforward derivation gives the value ,z 2
1�β z 2

1�β
which is approximately 2.71 when β = 0.05, but replacing this value by −ln β (approximately 3 when β = 0.05)
accounts for the fact that when the mean count is low, a Poisson distribution is only imperfectly approximated by a
normal distribution. The value !ln β is the exact value of SD when the mean blank count rate is zero, because in this
case SC = 0, and Pr[  = 0] # β if and only if S $ !ln β. Note also that the equation in the text is valid only if α = β.�S
MARLAP considers either  or −ln β to be an acceptable value in this case.z 2

1�β
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SD ' z 2
1&β % 2SC (20.26)

SD ' 2.71 % 2SC (20.27)

SD,3 ' 23.78 % 1.645 σ2( �S | S ' 50.88) ' 50.89

SD,4 ' 23.78 % 1.645 σ2( �S | S ' 50.89) ' 50.89

The sequence converges to 50.89, which is the value of SD.

Notice that the same value can be calculated using Equation 20.22 or 20.23 with the constants
a = 0.0045, b = 1, c = 209.

20.4.2.3  Poisson Counting

If the following assumptions are true:

� The mean blank count is at least 100
� The only source of signal variance considered is Poisson counting statistics
� α = β
� Equation 20.11 is used to calculate the critical net signal, SC

then the minimum detectable net signal, SD, is given by the following simple equation.6

In the special case when α = β = 0.05, Equation 20.26 becomes

In the case when α … β, SD is determined from Equation 20.22 using the following values for a, b,
and c.

a ' 0 b ' 1 c ' RB tS 1 %
tS

tB

The resulting formula for SD is
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SD ' SC %
z 2

1�β

2
% z1�β

z 2
1�β

4
% SC % RB tS 1 %

tS

tB

(20.28)

EXAMPLE 20.5

Problem: Consider Example 20.1 again, where a 6000-second blank measurement on a pro-
portional counter produces 108 beta counts and a test source is to be counted for 3000 s.
Assume this blank measurement gives the best available estimate of the true mean blank count
rate, RB, and use Equation 20.27 to calculated the minimum detectable net signal, SD, using the
default value, 0.05, for Type I and Type II error probabilities. Also use Equation 20.28 to
calculate SD for α = 0.05 and β = 0.10.

Solution: As in Example 20.1, the critical net count, SC, equals 14.8. The count times are tS =
3000 s and tB = 6000 s. The mean blank count rate, RB, is estimated by

RB . 108
6000 s

' 0.018 s&1

For the first part of the problem, Equation 20.27 may be used, because α = β = 0.05. It gives
the result

SD ' 2.71 % 2(14.8) ' 32.3 net counts

For the second part of the problem, Equation 20.28 is used, because α … β.

SD ' SC %
z 2

1�β

2
% z1�β

z 2
1�β

4
% SC % RB tS 1 %

tS

tB

' 14.8 %
1.2822

2
% 1.282 1.2822

4
% 14.8 % (0.018 s&1)(3,000 s) 1 %

3000 s
6000 s

' 28.2 net counts

As previously noted, counting data never follow the Poisson model exactly. Variable factors such
as the yield, counting efficiency, subsampling error, and source geometry and placement tend to
increase a, while interferences and background instability tend to increase c. So, using any of
Equations 20.26�28 to calculate SD is only appropriate if a conservative value of the sensitivity
factor, A, (such as the β-quantile of the distribution of the true sensitivity) is used when con-
verting SD to the MDC. The following example illustrates the calculation of SD and xD when both
Poisson counting statistics and other sources of variance are considered.
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EXAMPLE 20.6

Problem: Again consider the scenario of Example 20.5, where tB = 6000 s, tS = 3000 s, and
RB . 0.018 s!1. Let the measurement model be

X '
NS & (NB tS / tB)

tSgYmS DFS

where
X is the specific activity of the radionuclide in the sample;
g is the counting efficiency;
Y is the yield;
mS is the mass of the test portion;
D is the decay-correction factor (calculated); and
FS is the subsampling factor.

Assume:
� the mass of the test portion is always between 0.98 g and 1.05 g
� the half-life of the analyte is 5.07 d, and decay times from collection to start of

counting range from about 3 d to about 10 d
� the counting efficiency has mean 0.42 and a 2 % coefficient of variation
� the yield has approximate mean 0.85 and a 5 % coefficient of variation
� the subsampling factor, whose mean is assumed to be 1, has a 3 % coefficient of

variation
� background instability contributes a non-Poisson standard deviation of 0.001 s!1 to the

blank correction, expressed as a count rate (see Section 19.5.4 of Chapter 19).

Calculate SD and xD using the value 0.05 for both the Type I and Type II error probabilities.

Solution: First determine how to handle each variable sensitivity factor. The following
approach is reasonable.

� The source count time, tS, has negligible variability; so, use the given value 3000 s and
ignore the variance.

� The mass of the test portion, mS, has only a little variability; so, use the lower bound,
0.98 g, and ignore the variance of mS.

� The decay-correction factor, D, can vary significantly from sample to sample, but no
information is given about the distribution except its range of values. Assume a rec-
tangular distribution of decay times from 3 d to 10 d, and calculate the 95th percentile, 3
+ 0.95(10 ! 3) = 9.65 d, which gives the 5th percentile of the decay-correction factor
(calculated below).



Detection and Quantification Capabilities

20-27JULY 2004 MARLAP

� Use the stated mean values of the counting efficiency (g), yield (Y), and subsampling
factor (FS) to calculate the sensitivity factor, and use the stated coefficients of variation
for these factors when calculating SD.

Next write an expression for the variance of the net signal, . The Poisson counting variance�S
is given by

Poisson variance of NS & NB

tS

tB

' E(NS) % E(NB)
t 2
S

t 2
B

' (S % RB tS) % RB

t 2
S

tB

where E( @ ) denotes expectation. The non-Poisson variance of the background contributes to �S
an additional variance component equal to . The variability of the efficiency, yield,(0.001)2t 2

S
and subsampling factor contribute a variance component of 

(1 % 0.022)(1 % 0.052)(1 % 0.032) & 1 × S 2 ' 0.0038 × S 2

Therefore, the total variance of  is given by�S

σ2( �S) ' S % RB tS % RB

t 2
S

tB

% (0.001 s&1)2t 2
S % (0.0038 × S 2)

' (0.0038 × S 2) % S % RB tS 1 %
tS

tB

% (0.001 s&1)2t 2
S

So, let a, b, and c be as follows.

a ' 0.0038 b ' 1 c ' RB tS 1 %
tS

tB

% (0.001 s&1)2 t 2
S ' 90

As in Example 20.2, the critical net count, SC, equals 15.6. Then Equation 20.23 gives the
minimum detectable net signal, SD.

SD '
(1)(1.645)2 % 2(15.6)
1 & (1.645)2(0.0038)

'
33.918
0.9897

' 34.3 counts

The value of the sensitivity factor, A, is obtained from the product of the chosen values for the
count time, counting efficiency, yield, test portion size, decay factor, and subsampling factor.
The decay constant, λ, must be calculated from the half-life, T1/2 = 5.07 d.
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λ ' ln2
T1/2

'
0.693147

(5.07 d)(86,400 s /d)
' 1.582 × 10&6 s &1

Then the decay-correction factor is calculated.

D ' e&λ tD 1 & e&λ tS

λ tS

' e&(1.582×10&6 s&1)(9.65 d)(86,400 s/d) 1 & e&(1.582×10&6 s&1)(3000 s)

(1.582×10&6 s&1)(3000 s)
' 0.2667

So, the sensitivity factor is

A ' tSgYmS DFS ' (3000 s)(0.42)(0.85)(0.98 g)(0.2667)(1) ' 279.9 g @s

Therefore, the minimum detectable concentration is

xD '
SD

A
'

34.3
279.9

' 0.12 Bq/g

20.4.2.4  More Conservative Approaches

More conservative (higher) estimates of the MDC may be obtained by following the recommen-
dations of NUREG/CR-4007, in which formulas for MDC (LLD) include estimated bounds for
relative systematic error in the blank determination ( B) and the sensitivity ( A). The critical net∆| ∆|
count SC is increased by , and the minimum detectable net count SD is increased by .∆| B

�B 2∆| B
�B

The MDC is then calculated by dividing SD by the sensitivity and multiplying the result by
. The NUREG�s conservative approach treats random errors and systematic errors differ-1 % ∆| A

ently to ensure that the MDC for a measurement process is unlikely to be consistently under-
estimated, which is an important consideration if the laboratory is required by regulation or
contract to achieve a specified MDC.

20.4.2.5  Experimental Verification of the MDC

To ensure that the MDC has been estimated properly, one may test the estimate experimentally
by analyzing n identical control samples spiked with an analyte concentration equal to xD. If the
MDC has been determined properly (the null hypothesis), the probability of failing to detect the
analyte in each control sample is at most β. Then the number of nondetectable results in the ex-
periment may be assumed to have a binomial distribution with parameters n and β. If k non-
detectable results are actually obtained, one calculates the cumulative binomial probability
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P 'j
n

j'k

n
j
β j (1 � β)n� j or 1 � j

k�1

j'0

n
j
β j (1 � β)n� j (20.29)

and rejects the null hypothesis if P is smaller than the chosen significance level for the test
(which may differ from the significance level for the analyte detection test).

NOTE: For any nonnegative integers n and j, the notation  denotes a binomial coefficient, usually read �nn
j

choose j,� which is the number of possible combinations of n objects chosen j at a time. For 0 # j # n, the
value of  equals , where the symbol ! denotes the factorial operator. The number of combinationsn

j
n!

j!(n& j)!

of n objects chosen j at a time is also denoted sometimes by nCj .

To make the test realistic, one should ensure that the physical and chemical characteristics of the
control samples, including potential interferences, are representative of laboratory samples
encountered in practice.

EXAMPLE 20.7

Problem: Assume xD is estimated with β = 0.05. As a check, 10 control samples spiked with
concentration xD are analyzed and 3 of the 10 produce nondetectable results. Does xD appear to
have been underestimated (at the 10 % level of significance)?

Solution: The variables are n = 10, β = 0.05, and k = 3. Calculate the P-value

P �� 1 � j
2

j��0

10
j

(0.05) j (0.95)10� j �� 1 � 0.9885 �� 0.0115

Since P # 0.10, reject the null hypothesis and conclude that the MDC was underestimated.

20.4.3  Calculation of the Minimum Quantifiable Concentration

The minimum quantifiable concentration (MQC), or the minimum quantifiable value of the con-
centration, was defined in Section 20.2.7 as the analyte concentration in a laboratory sample that
gives measured results with a specified relative standard deviation 1 / kQ, where kQ is usually
chosen to be 10.

Calculation of the MQC requires that one be able to estimate the standard deviation for the result
of a hypothetical measurement performed on a laboratory sample with a specified analyte con-
centration. Section 19.5.13 of Chapter 19 discusses the procedure for calculating the standard
deviation for such a hypothetical measurement.
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xQ ' kQ σ2( �X | X ' xQ) (20.30)

xQ '
k 2

Q

2AIQ

1 % 1 %
4 IQ

k 2
Q

RB tS 1 %
tS

tB

% ξ2
B t 2

S % RI tS % σ
2( �RI) t 2

S
(20.31)

The MQC is defined symbolically as the value xQ that satisfies the relation

where σ2(  | X = xQ) denotes the variance of the estimator  when the true concentration X�X �X
equals xQ. If the function σ2(  | X = xQ) has a simple form, it may be possible to solve Equation�X
20.30 for xQ using only algebraic manipulation. Otherwise, fixed-point iteration, which was
introduced in Section 20.4.2, may be used. The use of fixed-point iteration for this purpose is
shown below.

1. Initially calculate xQ = kQ σ2( �X | X ' 0) (using X = 0)

2. repeat loop (Lines 3�4)

3. Set h = xQ

4. Recalculate xQ = kQ σ2( �X | X ' h) (using X = h)

5. until |xQ ! h | is sufficiently small

6. output the solution xQ

The sequence of values generated by the algorithm typically converges upward to the solution.

When Poisson counting statistics are assumed, possibly with excess variance components, and
the mathematical model for the analyte concentration is X = S / A , where S is the net count, A
denotes the overall sensitivity of the measurement, Equation 20.30 may be solved for xQ to obtain
the formula

where
tS is the count time for the test source;
tB is the count time for the blank;
RB is the mean blank count rate;

is the non-Poisson variance component of the blank count rate correction;ξ2
B

RI is the mean interference count rate;
is the standard deviation of the measured interference count rate;σ( �RI)
is the relative variance of the measured sensitivity, , including the subsamplingφ2

�A
�A

variance; and
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xQ '
k 2

Q

2(1 & k 2
Q a)

b % b 2 %
4c (1 & k 2

Q a)

k 2
Q

(20.32)

IQ is equal to 1 ! kQ
2 .φ2

�A

If the true sensitivity A may vary, then a conservative value, such as the 0.05-quantile A0.05 ,
should be substituted for A in the formula. Note that  denotes only the relative variance of φ2

�A
�A

due to subsampling and measurement error � it does not include the variance of the true
sensitivity, A.

Note that Equation 20.31 defines the MQC only if IQ > 0. If IQ # 0, the MQC is infinite, because
there is no concentration at which the relative standard deviation of  fails to exceed 1 / kQ. In�X
particular, if the relative standard deviation of the measured sensitivity  or the subsampling�A
standard deviation φSamp exceeds 1 / kQ, then IQ < 0 and the MQC is infinite.

More generally, if the variance of the measured concentration  can be expressed in the form�X
σ2( ) = aX2 + bX + c, where a, b, and c do not depend on X, then the MQC is given by the�X
formula

For example, if pure Poisson counting statistics are assumed and there are no interferences, then
, , and c = RB tS (1 + tS / tB) / A2.a ' φ2

�A b ' 1 / A

EXAMPLE 20.8

Problem: Refer once more to Examples 20.5 and 20.6, where the measurement model is given
by

X '
NS & (NB tS / tB)

tSgYmS DFS

where
X is the specific activity of the radionuclide in the sample;
NS is the sample (gross) count;
NB is the blank count;
tS is the sample count time (s);
tB is the blank count time (s);
g is the counting efficiency;
Y is the yield;
mS is the mass of the test portion (g);
D is the decay-correction factor; and
FS is the subsampling factor.
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Keep the same assumptions as in the earlier examples. Assume also that the relative standard
deviation of the yield measurement (as opposed to that of the yield itself) is 3 %, and that the
relative standard deviation of the efficiency measurement is 2 %. Use Equation 20.31 to calcu-
late the minimum quantifiable concentration, xQ, defined as the analyte concentration at which
the relative standard deviation of the measurement process is 10 %.

Solution: The relative measurement variance of the sensitivity, , is assumed to be the sumφ2
�A

of the relative subsampling variance and the relative measurement variances of Y and g, since
the other sensitivity factors are measured with better relative precision. As in the earlier
example, conservative values for mS (0.98 g) and D (0.2667) will be used in the calculation of
the sensitivity factor, A. However, for this problem, a somewhat conservative value of the
yield will also be used, because the true yield has a 5 % relative standard deviation, which is
not otherwise taken into account. Since the mean value of the yield is 0.85 and the relative
standard deviation is 5 %, estimate the 0.05-quantile of the yield as follows:

Y = 0.85 × (1 − 1.645 × 0.05) = 0.78

The following values are also used in this problem.

tS ' 3000 s
tB ' 6000 s

RB ' 0.018 s&1

g ' 0.42
RI ' 0, σ2( �RI) ' 0, ξB ' 0
kQ ' 10
φg ' 0.02
φY ' 0.03

φSamp ' 0.03

φ2
�A ' φ

2
g % φ

2
Y ' φ

2
Samp ' 0.022 % 0.032 % 0.032

IQ ' 1 & k 2
Qφ

2
�A ' 1 & 100(0.022 % 0.032 % 0.032) ' 0.78

The sensitivity factor, A, is now evaluated as follows.

A =  = (3000 s)(0.42)(0.78)(0.98 g)(0.2667)(1) = 256.9 g @ stSgYmS DFS

Next, the MQC can be calculated as shown below.
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xQ '
k 2

Q

2AIQ

1 % 1 %
4 IQ

k 2
Q

RB tS 1 %
tS

tB

% 0

'
100

2(256.9 g @s)(0.78)
1 % 1 %

4(0.78)
100

(0.018 s&1) (3000 s) 1 %
3000 s
6000 s

% 0

' 0.718 Bq/g

Now, as a check, one may use the procedure described in Section 19.5.13 of Chapter 19 to
predict the combined standard uncertainty of a measurement made on a hypothetical sample
whose analyte concentration is exactly xQ.

NB ' RB tB ' (0.018 s&1)(6000 s) ' 108

NS ' xQ A % RB tS ' (0.718 Bq/g)(256.9 g @s) % (0.018 s&1)(3000 s) ' 238.45

uc(X) '
NS % NB t 2

S / t 2
B

A 2
% x 2

Q
u 2(g)
g2

%
u 2(Y)

Y 2
% φ2

Samp

'
238.45 % (108)(3000 s)2 / (6000 s)2

(256.9 g @s)2
% (0.718 Bq/g)2 0.022 % 0.032 % 0.032

' 0.0718 Bq/g

So, the combined standard uncertainty is predicted to be 0.0718 , or 10 % of the trueBq/g
value, as expected.
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Pr[ �S > SC | X ' 0] ' α (20.33)

SC ' z1�ασ0 (20.34)

SC ' t1&α(ν) × �σ0 (20.35)

ATTACHMENT 20A
Low-Background Detection  Issues

20A.1  Overview

This attachment describes methods for determining critical values and minimum detectable con-
centrations (MDCs) when the standard deviation of the blank signal is not known precisely,
which occurs for example when the blank is measured by low-background Poisson counting or
when the standard deviation is estimated from a small number of replicate measurements. The
methods described below are applicable more generally, even when the background is high or the
number of degrees of freedom is large, but in these situations the simpler methods described
previously should be adequate.

20A.2  Calculation of the Critical Value

The critical value of the net signal SC was defined earlier by the relation

When the signal assumes only discrete values (e.g., numbers of counts), there may be no value SC
that satisfies Equation 20.33 exactly. The critical value in this case is defined as the smallest
value SC such that Pr[  > SC | X = 0] # α.�S

20A.2.1 Normally Distributed Signals

If the distribution of the net signal  under H0 is approximately normal with a well-known stan-�S
dard deviation, σ0, the critical value of  is�S

where z1!α denotes the (1 ! α)-quantile of the standard normal distribution. Typically the stan-
dard deviation σ0 is not well-known and must therefore be replaced by an estimate, σ�0. If σ�0 is
determined by a statistical evaluation with ν degrees of freedom, the multiplier z1 − α should be
replaced by t1!α(ν), the (1 ! α)-quantile of the t-distribution with ν degrees of freedom (cf. Type
A evaluation of standard uncertainty in Section 19.4.2.1 of Chapter 19). Thus,

Table G.2 in Appendix G lists values of t1!α(ν). In general, t1!α(ν) is greater than z1!α , but the two
values are approximately equal if ν is large.
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�σ0 ' sB 1 %
1
n

(20.36)

SC ' t1&α(n&1) × sB 1 %
1
n

(20.37)

When  is estimated by the average of n replicate blank measurements (assuming no interfer-�B
ences), the standard deviation σ�0 of the net signal  under the null hypothesis may be estimated�S
from the experimental standard deviation of the measured blank values, sB. Specifically,

The number of degrees of freedom, ν, in this case equals n ! 1; so, the critical value of  is�S

EXAMPLE 20.9

Problem: Suppose seven replicate blank measurements are made, producing the following
results (total counts).

58    43    64    53    47    66    60

Assume the blank distribution is approximately normal and calculate the critical value of the
net count (gross sample count minus average blank count) using a 5 % significance level.

Solution: First, calculate the mean blank count, .B

B '
1
n j

n

i'1
Bi '

391
7

' 55.857

Calculate the standard deviation of the blank counts, sB.

sB '
1

n & 1 j
n

i'1
(Bi & B)2 '

442.857
7 & 1

' 8.5912

Find the 0.95-quantile of the t-distribution with 7 ! 1 = 6 degrees of freedom in Appendix G.

t1 & α(n&1) ' t0.95(6) ' 1.943

Calculate the critical net count using Equation 20.37.

SC ' t1&α(n&1) × sB 1 %
1
n
' 1.943 × 8.5912 1 %

1
7
' 17.85

Thus, the net count must exceed 17.85 to be considered detected.
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7 The breaks in the table occur at RB tS = 0.5 (2yC) and 0.5 (2yC + 2).× χ2
0.05 × χ2

0.05
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�Y ' NS
�B '

NB

tB

% �RI tS (20.38)

�S ' NS &
NB

tB

% �RI tS (20.39)

e&RB tS j
n

k'0

(RB tS)k

k!
$ 1 & α (20.40)

Note that if  were used instead of  in the equation, the critical value would bez1&α t1&α(n&1)
underestimated as

SC ' z1&α × sB 1 %
1
n
' 1.645 × 8.5912 1 %

1
7
' 15.11 (incorrect)

20A.2.2 Poisson Counting

It is assumed here, as in Section 20.4, that the instrument is a radiation counter and the instru-
ment signal is the gross count. Therefore,

and the net instrument signal is the net count,  which is given by

where
NS is the gross count (source count);
NB is the blank count;

is the estimated count rate due to interferences;�RI
tS is the count time for the test source; and
tB is the count time for the blank.

If tB is much greater than tS, generally at least 10 times greater, the blank count rate, RB, can be
considered to be �well-known,� because it contributes little variance to the net signal, . The�S
value of RB may be estimated from a single measurement of long duration or from an average of
several measurements of shorter duration. Whenever RB is well-known, if there are no inter-
ferences, then according to the Poisson model, the critical gross count, yC, equals the smallest
nonnegative integer n such that

Then SC, the critical net count, equals  yC ! RBtS. Table 20.1 shows critical gross counts for α =
0.05 for small values of RBtS (adapted from NRC, 1984).7 To use the table, one calculates the
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8 Probabilities on the curves are calculated using the equation

P(µ) ' 1 & e&µ (1% tB/ tS) j
4

n'0

(µtB/ tS)n

n! j
yC(n)

k'0

µk

k!

where µ = RBtS (the true mean gross count when the sample contains no analyte) and yC(n) denotes the critical gross
count obtained from Table 20.1 when RBtS is approximated by .n (tS / tB)
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yC ' 0.5 % RB tS % z1&α RB tS (20.41)

value of RBtS, finds the appropriate line in the table, and compares the observed gross count NS to
the value of yC read from the table. The analyte is considered detected if and only if NS > yC.
When RBtS is greater than about 20, yC may be approximated by

where z1!α denotes the (1 − α)-quantile of the standard normal distribution, and for any number x,
the expression lxm denotes the largest integer not greater than x.

Note that these critical values are appropriate only under the assumption of Poisson counting
statistics with no interferences.

Figure 20.2 shows the Type I error rates produced by Table 20.1 for α = 0.05 and three different
count-time ratios, tB / tS. The error rates are much greater than 0.05 when the blank count time
equals the sample count time, but they fall as the blank count time increases (and the blank count
rate becomes better known). If the blank count rate were known perfectly, the Type I error rate
would remain at or below 0.05 everywhere.8

      RB tS yC       RB tS yC       RB tS yC

0.000�0.051 0 5.425�6.169 10 13.255�14.072 20

0.051�0.355 1 6.169�6.924 11 14.072�14.894 21

0.355�0.818 2 6.924�7.690 12 14.894�15.719 22

0.818�1.366 3 7.690�8.464 13 15.719�16.549 23

1.366�1.970 4 8.464�9.246 14 16.549�17.382 24

1.970�2.613 5 9.246�10.036 15 17.382�18.219 25

2.613�3.285 6 10.036�10.832 16 18.219�19.058 26

3.285�3.981 7 10.832�11.634 17 19.058�19.901 27

3.981�4.695 8 11.634�12.442 18 19.901�20.746 28

4.695�5.425 9 12.442�13.255 19 20.746�21.594 29

TABLE 20.1 � Critical gross count (well-known blank)
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SC ' z1&α tS

RB % RI

tS

%
RB

tB

% ξ2
B % σ2( �RI) (20.42)

SC ' z1&α RB tS 1 %
tS

tB

(20.43)

tB = tS
tB = 5tS tB = 10tS

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0.25
P

RBtS

FIGURE 20.2 � Type I error rates for Table 20.1

Other commonly used methods for calculating the critical value when the blank count rate is not
well-known are described below.

THE POISSON-NORMAL APPROXIMATION

As stated in Section 20.4.1.2, when Poisson counting statistics are assumed (possibly with addi-
tional variance components) and the instrument background remains stable between measure-
ments at a level where the Poisson distribution is approximately normal, the critical net count is
given approximately by the equation

where RB denotes the (true) mean count rate of the blank, RI denotes the mean interference count
rate, denotes non-Poisson variance in the blank (count rate) correction, and σ2( I) denotes theξ2

B
�R

variance of the estimator for RI . When there are no interferences and no non-Poisson blank var-
iance, this equation becomes

Low mean blank levels cause the Poisson distribution to deviate from the normal model. Figure
20.3 shows the effects of these deviations on the Type I error rates for the Poisson-normal
approximation when tB = tS and α = 0.05. The graph has discontinuities because of the discrete
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9 Probabilities on the curve are calculated using the equation

P(µ) ' 1 & e&2µj
4

n'0

µn

n! j
n%2.33 µ

k'0

µk

k!

where µ denotes the (true) mean blank count. Terms of the infinite sum are accumulated until the cumulative
Poisson probability, , approaches 1. The calculated values agree with those listed in Table 1 ofe&µ'n

i'0 µi / i!
Brodsky (1992). The discontinuities occur at µ = k2 / 2.332 for k = 1, 2, 3, �.
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SC ' z1&α
�RB tS 1 %

tS

tB

(20.44)

�RB ' wS

NS

tS

% wB

NB

tB
(20.45)

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20
P

RBtS

FIGURE 20.3 � Type I error rate for the Poisson-normal approximation (tB = tS)

nature of the Poisson distribution, but the Type I error rate is approximately correct (equal to
0.05) when the mean blank count is 10 or more.9

In Equation 20.43, RB denotes the true mean blank count rate. In practice, RB is usually not well-
known; so, one must substitute an estimated value, , as shown in the following equation.�RB

The most frequently used expressions for SC may be derived from Equation 20.44 using an esti-
mator  that equals a weighted average of the measured blank count rate NB / tB and the meas-�RB
ured source count rate NS / tS. A weighted average of both measured rates may be used here to
estimate the true blank level for the purpose of the hypothesis test, because, under the null
hypothesis of zero net source activity, both measured rates are unbiased estimates of the true
blank count rate. Given nonnegative weights wS and wB such that wS + wB = 1, the mean blank
count rate is estimated by
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10 The common practice of using the same Poisson measurement data to calculate both the net signal  and its�S
critical value tends to produce a correlation between the two variables. This correlation does not exist when the
critical value is determined by a statistical evaluation of normally distributed data as described earlier in the attach-
ment.

11 The critical value  may be written as a function  of the observed net signal  and the blank count NB. Then�SC f( �S) �S
 exceeds  if and only if it exceeds the fixed point of f, which is the value SC where f(SC) = SC. The fixed point is�S �SC

a function of NB but not of NS .
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�SC ' z1&α wS

NS

tS

% wB

NB

tB

tS 1 %
tS

tB

(20.46)

SC '
z 2

1&αwS

2
1 %

tS

tB

% z1&α

z 2
1&αw 2

S

4
1 %

tS

tB

2
% NB

tS

tB

1 %
tS

tB

(20.47)

This estimator  is always unbiased under the null hypothesis of zero net activity and no inter-�RB
ferences, but the choice of weights affects the variance of the estimator. (When interferences are
present, this weighted average is inappropriate.)10

This attachment will use the notation , which is nonstandard, to denote any version of the�SC
critical value that depends on the gross signal NS (or ). Then Equations 20.44 and 20.45 imply�Y
the following.

It is often convenient to eliminate NS from the expression for  (e.g., when calculating the�SC
MDC). When the same measured value of NB is used to calculate both the critical value  and�SC
the net signal , elimination of NS from Equation 20.46 produces the following formula for an�S
alternative critical value SC.11

It is not generally true that SC =  unless wS = 0, but either critical value may be used to imple-�SC
ment the same test for analyte detection, because  > SC if and only if  > .�S �S �SC

If there is additional non-Poisson variance associated with the blank correction, an extra term
may be included under the radical (e.g., , where  is as in Equation 20.42), although at veryξ2

B t 2
S ξ2

B
low blank levels the Poisson variance tends to dominate this excess component.

FORMULA A

The most commonly used approach for calculating SC is given by Formula A (shown below).
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12 Probabilities on the two curves are calculated using the equation

P(µ) ' 1 & e&µ (1% tB/ tS) j
4

n'0

(µtB / tS)n

n! j
yC(n)

k'0

µk

k!

where yC(n) = and µ = RB tS (the mean gross count when the sample contains no analyte). The sameSC(n) % n (tS / tB)
equation with different expressions for SC(n) is used to calculate the Type I error rates shown in Figures 20.5�8.
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SC ' z1&α NB

tS

tB

1 %
tS

tB

Formula A

(20.48)

tB = tS

tB = 5tS

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0.25
P

RBtS

FIGURE 20.4 � Type I error rates for Formula A

If α = 0.05 and tB = tS, Formula A leads to the well-known expression  for the critical2.33 NB
net count (e.g., see Currie, 1968).

Formula A may be derived from Equation 20.44 by using the blank measurement alone to
estimate the true blank count rate � i.e., by using the weights wS = 0 and wB = 1.

As noted in Section 20.4.1.2, when the blank count is high (e.g., 100 or more), Formula A works
well, but at lower blank levels, it can produce a high rate of Type I errors. Figure 20.4 shows
Type I error rates for Formula A as a function of the mean blank count for count time ratios
tB / tS = 1 and 5 when α = 0.05.12
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�SC ' z1&α NS % NB

t 2
S

t 2
B

(20.49)

SC '
z 2

1&α

2
% z1&α

z 2
1&α

4
% NB

tS

tB

1 %
tS

tB

Formula B

(20.50)

tB = tS
tB = 5tS

0 5 10 15 20
0.00

0.05

0.10

0.15
P

RBtS

FIGURE 20.5 � Type I error rates for Formula B

FORMULA B

Another published formula for the critical value is (equivalent to) the following (Nicholson,
1966).

The critical value calculated by Equation 20.49 equals z1 − α times the combined standard uncer-
tainty of the net count. This fact is the basis for the original derivation of the formula, but the
formula may also be derived from Equation 20.46 using the weights wS = tB / (tS + tB) and wB =
tS / (tS + tB) to estimate . When NS is eliminated from Equation 20.49, one obtains Formula B�RB
(below), which is equivalent to the equation for the critical value given in Atoms, Radiation, and
Radiation Protection (Turner, 1995).

Type I error rates for Formula B are shown in Figure 20.5.

Formula B appears natural and intuitive when it is derived in terms of the combined standard
uncertainty of the net count, and it gives excellent results when tB = tS and the pure Poisson
model is valid. However, when the formula is derived using the weights wS and wB, as described
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13 The approach here is conceptually similar to that of a two-sample t-test, which employs a pooled estimate of
variance in the comparison of two normal populations.
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�SC ' z1&α (NS % NB)
tS

tB

(20.51)

SC '
z 2

1&α tS

2tB

% z1&α

z 2
1&α t 2

S

4t 2
B

% NB

tS

tB

1 %
tS

tB

Formula C

(20.52)

tB = tS tB = 5tS
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0.00

0.05

0.10

0.15
P

RBtS

FIGURE 20.6 � Type I error rates for Formula C

above, the expression seems much less natural, because the weights clearly are not optimal when
tB … tS. Notice that when tB > tS, the Type I error rate tends to be less than α.

FORMULA C

If the pure Poisson model is valid, then under the null hypothesis, the weights wS = tS / (tS + tB)
and wB = tB / (tS + tB) provide the minimum-variance unbiased estimator  for the mean blank�RB
count rate and lead to the following formula for the critical net count (Nicholson, 1963; 1966).13

Elimination of NS from Equation 20.51 produces Formula C, shown below.

Formula C is equivalent to the equation for the �decision threshold� given in Table 1 of ISO
11929-1 for the case of fixed-time counting. Figure 20.6 shows Type I error rates for Formula C.
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Z ' 2
NS % d

tS

&
NB % d

tB

1
tS

%
1
tB

(20.53)

SC ' d
tS

tB

& 1 %
z 2

1&α

4
1 %

tS

tB

% z1&α (NB % d)
tS

tB

1 %
tS

tB

The Stapleton Approximation

(20.54)

SC ' 1.35 % 2.33 NB % 0.4 (20.55)

If the blank correction involves additional non-Poisson variance, an extra term may be included
under the radical in Formula C; however, the weights wS and wB used to derive the formula are
not necessarily optimal in this case. (See ISO 11929-2 for another approach.)

Note that Formulas B and C are equivalent when tB = tS, because both assign equal weights to the
blank measurement and the source measurement. In this case, both formulas are also equivalent
to the formula given by Altshuler and Pasternack (1963).

THE STAPLETON APPROXIMATION

When the mean counts are low and tB … tS, another approximation formula for SC appears to out-
perform all of the approximations described above. For small values of the constant d, the
statistic

which involves variance-stabilizing transformations of the Poisson counts NS and NB, has a distri-
bution that is approximately standard normal under the null hypothesis (Stapleton, 1999; Strom
and MacLellan, 2001). So, the critical value of Z is z1!α, the (1 − α)-quantile of the standard
normal distribution. From these facts one may derive the following expression for the critical net
count as a function of NB.

When α = 0.05, the value d = 0.4 appears to be a near-optimal choice. Then for tB = tS, the
Stapleton approximation gives the equation

Figure 20.7 shows the Type I error rates for the Stapleton approximation when α = 0.05 and
d = 0.4. This approximation gives Type I error rates almost identical to those of Formulas B and
C when tB = tS, but it has an advantage when tB … tS.



Detection and Quantification Capabilities: Low-Background Detection Issues

14 The left-hand side of the inequality is a cumulative binomial probability (see Attachment 19A of Chapter 19). It
also equals

I tS
tS% tB

(NS,NB%1)

where Ix(a,b) denotes the incomplete beta function (NBS, 1964; Press et al., 1992). 
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tB = tS

tB = 5tS
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0.05
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RBtS

FIGURE 20.7 � Type I error rates for the Stapleton approximation

j
NS%NB

k'NS

NS % NB

k

tS

tS% tB

k tB

tS% tB

NS%NB&k
# α (20.56)

When α … 0.05, the value d = z1!α / 4.112 appears to give good results (4.112 = z0.95 / 0.4).

When the blank correction involves a small non-Poisson variance component, a term ( ) mayξ2
B t 2

S
be included under the radical in Equation 20.54 to account for it.

THE EXACT TEST

Poisson counting statistics also permit an �exact� test for analyte detection, whose Type I error
rate is guaranteed to be no greater than the chosen value of α, although it may be less. A ran-
domized version of the test can provide a Type I error rate exactly equal to α (Nicholson, 1963),
but only the nonrandomized version will be considered here, since its outcome is always based
solely on the data and not on a random number generator. The test is implemented by rejecting
H0 if and only if the following inequality is true.14

NOTE: For any nonnegative integers n and k, the notation  denotes a binomial coefficient, usually readn
k

�n choose k,� which is the number of possible combinations of n objects chosen k at a time. For 0 # k # n,
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15 To implement the randomized test, calculate the critical value , and, if NS > , reject H0, as in the non-�yC �yC
randomized test. If NS = , calculate a rejection probability P by subtracting 1 ! α from the sum on the left-hand�yC
side of the inequality (with n = NS) and dividing the difference by the summation�s last term

NS % NB
NS

tS

tS % tB

NS tB

tS % tB

NB

Then reject H0 with probability P.
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j
n

k'0

NS % NB

k

tS

tS % tB

k tB

tS % tB

NS%NB&k
$ 1 & α (20.57)

j
n

k'0

NB % k
NB

tS

tS % tB

k
$ (1 & α)

tS % tB

tB

NB%1

(20.58)

tB = tS
tB = 5tS
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FIGURE 20.8 � Type I error rates for the nonrandomized exact test

the value of  equals , where the symbol ! denotes the factorial operator. The number of combina-n
k

n!
k!(n&k)!

tions of n objects chosen k at a time is also denoted sometimes by nCk .

Nicholson presents the test as a comparison of the gross count NS to a critical value. The critical
value  is the smallest nonnegative integer n such that15�yC

The same (nonrandomized) test is implemented by calculating a critical gross count, yC, equal to
the smallest nonnegative integer, n, such that

Then the critical net count, SC, equals yC ! NB (tS / tB). (Note that Inequality 20.58 is intended for
use when NB is small.) Table G.4 in Appendix G lists critical values yC for α = 0.01 and 0.05 and
for integral values of the count time ratio, tB / tS, ranging from 1 to 5.

Figure 20.8 shows the Type I error rates for the nonrandomized exact test. (The Type I error rate
for the randomized version of the test equals 0.05 everywhere.)
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EXAMPLE 20.10

Problem: A 60,000-second blank measurement is performed on an alpha-particle spectrometer
and 4 counts are observed in a region of interest. A test source is to be counted for 60,000 s.
Use the methods described in this attachment to estimate the critical value of the net count
when α = 0.05.

Solution: Table 20.1 should not be used in this case, because the ratio of count times, tB / tS, is
too small.

Formula A gives the result

SC ' z1&α NB

tS

tB

1 %
tS

tB

' 1.645 4 60,000 s
60,000 s

1 %
60,000 s
60,000 s

' 4.65 net counts.

Formula B gives the result

SC '
z 2

1&α

2
% z1&α

z 2
1&α

4
% NB

tS

tB

1 %
tS

tB

'
1.6452

2
% 1.645 1.6452

4
% 4 60,000 s

60,000 s
1 %

60,000 s
60,000 s

' 6.20 net counts.

Formula C gives the result

SC '
z 2

1&α tS

2tB

% z1&α

z 2
1&α t 2

S

4t 2
B

% NB

tS

tB

1 %
tS

tB

'
1.6452(60,000 s)

2(60,000 s)
% 1.645 1.6452(60,000 s)2

4(60,000 s)2
% 4 60,000 s

60,000 s
1 %

60,000 s
60,000 s

' 6.20 net counts.
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Notice that Formula B and Formula C give the same result, because tS = tB.

The Stapleton approximation (with d = 0.4) gives the result 

SC ' d
tS

tB

& 1 %
z 2

1&α

4
1 %

tS

tB

% z1&α (NB % d)
tS

tB

1 %
tS

tB

' 0.4 60,000
60,000

& 1 %
1.6452

4
1 %

60,000
60,000

% 1.645 (4 % 0.4) 60,000
60,000

1 %
60,000
60,000

' 6.23 net counts.

The exact test gives the result yC = 11 counts (the entry in Table G.4 for α = 0.05, tB / tS = 1,
and NB = 4), which implies that

 net counts.SC ' 11 & (4) (60,000 / 60,000) ' 7

EXAMPLE 20.11

Problem: Consider again the problem presented in Example 20.1. A 6000-second blank meas-
urement is performed on a proportional counter and 108 beta counts are observed. A test
source is to be counted for 3000 s. Use the methods described in this attachment to estimate
the critical value of the net count when α = 0.05.

Solution: Again, Table 20.1 should not be used, because the ratio of count times, tB / tS, is too
small.

Formula A gives the result

SC ' z1&α NB

tS

tB

1 %
tS

tB

' 1.645 108 3000
6000

1 %
3000
6000

' 14.8 net counts.

Notice that this is the same result that was obtained in Example 20.1.
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Formula B is not recommended. Since tB > tS in this case, Formula B produces a Type I error
rate that is less than α.

Formula C gives the result

SC '
z 2

1&α tS

2tB

% z1&α

z 2
1&α t 2

S

4t 2
B

% NB

tS

tB

1 %
tS

tB

'
(1.645)2(3000)

2(6000)
% 1.645 (1.645)2(3000)2

4(6000)2
% 108 3000

6000
1 %

3000
6000

' 15.5 net counts.

The Stapleton approximation (with d = 0.4) gives the result 

SC ' d
tS

tB

& 1 %
z 2

1&α

4
1 %

tS

tB

% z1&α (NB % d)
tS

tB

1 %
tS

tB

' 0.4 3000
6000

& 1 %
1.6452

4
1 %

3000
6000

% 1.645 (108 % 0.4) 3000
6000

1 %
3000
6000

' 15.6 net counts.

The exact test gives the result yC = 70 counts (the entry in Table G.4 for α = 0.05, tB / tS = 2,
and NB = 108), which implies that

 net counts.SC ' 70 & (108)(3000 / 6000) ' 16

COMPARISONS AND RECOMMENDATIONS

Although Formula A gives the highest Type I error rates of all the formulas described above in
the pure Poisson counting scenario, it is the formula that can be adapted most easily for dealing
with interferences. It can also be modified to reduce the very high Type I error rates at low blank
levels (by adding 1 or 2 to the number of blank counts NB under the radical). Formula B cannot
be recommended. When the pure Poisson model is valid, Formula C gives better results than
either A or B, but the Stapleton approximation appears to give the most predictable Type I error
rates of all.  Nicholson�s exact test is the only one of the tests whose Type I error rate is guaran-
teed not to exceed the chosen significance level, but it is also the most complicated of the tests
and requires either software or lookup tables to be practical. Furthermore, the nonrandomized
version of the test has relatively low power. Achieving the chosen significance level exactly
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Pr[ �S # SC | X ' xD] ' β (20.59)

appears to require the randomized version of Nicholson�s test. Using critical values from Table
20.1 is appropriate when the blank is counted much longer than the sample and the expected
count for an analyte-free sample is very low.

MARLAP makes the following recommendations regarding the use of the various equations for
the critical value when Poisson statistics are assumed:

  � A laboratory should confirm the validity of the Poisson approximation before using Table
20.1, Formula A, Formula C, Stapleton�s approximation, Nicholson�s exact test, or any other
detection criterion that is based on pure Poisson counting statistics. (If the Poisson approx-
imation is invalid, the blank distribution should be determined by repeated measurements.)

  � If the blank count time is at least 10 times longer than the sample count time, the critical
gross counts in Table 20.1 can be used.

  � If the mean blank count is at least 100, Formula A can be used and may be preferred for its
relative simplicity.

  � Formula B for the critical value should not be used.
  � If the ratio of count times, tB / tS, is not large, and if the mean blank count is less than 100,

either Formula C or Stapleton�s approximation should be used. Stapleton�s approximation
seems to have an advantage over Formula C when tS … tB.

  � Nicholson�s exact test may be used to compare the means of two Poisson distributions when
a high level of statistical rigor is required, but it is more complicated than necessary for
routine laboratory analyses and lacks the power of Formula C and Stapleton�s approx-
imation.16

20A.3  Calculation of the Minimum Detectable Concentration

The minimum detectable concentration, or MDC, was defined earlier as the concentration of
analyte, xD, that must be present in a laboratory sample to give a probability 1 − β of obtaining a
measured response greater than its critical value. Equivalently, the MDC is defined as the analyte
concentration xD that satisfies the relation

where the expression Pr[  # SC | X = xD] may be read as �the probability that the net signal �S �S
does not exceed its critical value SC when the true concentration X is equal to xD.�

The MDC may be estimated by calculating the minimum detectable value of the net instrument
signal, SD, and converting the result to a concentration. Recall that the minimum detectable value
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Pr[ �S # SC | S ' SD ] ' β (20.60)

SC ' t1&α(ν) × �σ0 (20.61)

SD ' δα,β,νσ0 (20.62)

t )β(ν,δα,β,ν) ' t1&α(ν) (20.63)

δα,β,ν . t1&α(ν) × 1 &
1
4ν

% z1&β 1 %
t1&α(ν)

2

2ν
(20.64)

of the net instrument signal is defined as the mean value of the net signal that gives a specified
probability, 1 − β, of yielding an observed signal greater than its critical value SC. Thus,

where S denotes the true mean net signal.

20A.3.1 Normally Distributed Signals

If the net signal, , is normally distributed and its estimated standard deviation, σ�0, under H0 is�S
determined from a statistical evaluation with ν degrees of freedom (e.g., n = ν + 1 replicate blank
measurements), then the critical value of  is�S

Then, if the variance of  is constant at all concentrations � or at least can be considered constant�S
at sufficiently low concentrations � the minimum detectable value of the signal is given by

where δα,β, ν denotes the noncentrality parameter of a noncentral t-distribution with ν degrees of
freedom. The parameter δα,β, ν is such that

where  denotes the β-quantile of the noncentral t-distribution. The noncentrality par-t )β(ν,δα,β,ν)
ameter δα,β, ν may be approximated by

which is based on an approximation for the noncentral t distribution function (NBS, 1964). When
α = β = 0.05 and ν $ 4, the noncentrality parameter is also approximated adequately by  ×t0.95(ν)
8ν / (4ν + 1) (Currie, 1997).

Conceptually the standard deviation σ�0 used to calculate the critical value, SC, is only an estimate
and therefore can be considered a random variable. If it were the true standard deviation, the cor-
rect multiplier used to calculate SC would be z1!α, not . However, the standard deviationt1&α(ν)
used to calculate SD is, conceptually at least, the true standard deviation σ0, even if its value is not
known exactly. The true standard deviation may be estimated by σ�0, but since the estimator σ�0 is
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mator for the standard deviation (see Section 19.4.5.2 in Chapter 19).
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c4 '
Γ ν%1

2

Γ ν
2

2
ν (20.65)

SD ' δα,β,ν

�σ0

c4
(20.66)

biased, a correction factor should be used for ν less than about 20.17 An unbiased estimator for σ0
is σ�0  / c4, where

and where Γ denotes the gamma function (NBS, 1964). The gamma function is easily computed
in software (Press et al., 1992), but c4 is also approximated well by 4ν / (4ν + 1), and values of c4
are commonly tabulated in references for statistical quality control (whence the notation c4 is bor-
rowed). Then SD is estimated by

which is approximately 2 σ�0, or 2SC, when α = β = 0.05 and ν $ 4. Values of c4 for ν = 1 tot0.95(ν)
40 are listed in Table 20.2.

TABLE 20.2 � Bias factor for the experimental standard deviation

ν c4 ν c4 ν c4 ν c4

1 0.79788 11 0.97756 21  0.98817 31  0.99197
2 0.88623 12 0.97941 22  0.98870 32  0.99222
3 0.92132 13 0.98097 23  0.98919 33  0.99245
4 0.93999 14 0.98232 24  0.98964 34  0.99268
5 0.95153 15 0.98348 25  0.99005 35  0.99288
6 0.95937 16 0.98451 26  0.99043 36  0.99308
7 0.96503 17 0.98541 27  0.99079 37  0.99327
8 0.96931 18 0.98621 28  0.99111 38  0.99344
9 0.97266 19 0.98693 29  0.99142 39  0.99361

10 0.97535 20 0.98758 30  0.99170 40  0.99377

EXAMPLE 20.12

Problem: Use the blank data from Example 20.10 to calculate the minimum detectable net
signal, SD. Assume the variance of the net signal, , is approximately constant at low analyte�S
concentrations.
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t )β ν,
SD

σD

' t1&α(ν) ×
σ0

σD
(20.67)

Solution: In Example 20.9 the standard deviation of the blank, sB, based on seven replicate
measurements was found to be 8.5912. The estimated standard deviation of the net signal
therefore is

�σ0 ' (8.5912) 1 %
1
7
' 9.1844

The number of degrees of freedom, ν, equals 7 ! 1 = 6. So, the value of the noncentrality par-
ameter, δα,β, ν, may be approximated as follows.

t1&α(ν) ' t0.95(6) ' 1.943

δα,β,ν ' t1&α(ν) × 1 &
1
4ν

% z1&α 1 %
t1&α(ν)

2

2ν

' 1.943 × 1 &
1

(4)(6)
% 1.645 1 %

1.9432

(2)(6)
' 3.748

The value of c4 for 6 degrees of freedom is 0.95937. So,

SD ' δα,β,ν

�σ0

c4

' (3.748) 9.1844
0.95937

' 35.88 .

If the variance of  is not constant but increases with the mean signal S, the minimum detectable�S
net signal is determined implicitly by the equation

where σD denotes the standard deviation of  when S = SD. An iterative algorithm, such as the�S
one shown below, may be needed to solve the equation for SD.

1. Set σ0 ' σ2( �S | S ' 0)

2. Initially calculate SD ' t1&α(ν) × σ0

3. repeat loop (Lines 4�7)

4. Set σD ' σ2( �S | S ' SD)
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δ . t1&α(ν) ×
σ0

σD

1 &
1
4ν

% z1&β 1 %
t1&α(ν) × σ0 /σD

2

2ν
(20.68)

5. Find the value of δ such that t )β(ν,δ) ' t1&α(ν) × σ0 /σD

6. Set h ' SD

7. Recalculate SD ' δσD

8. until  is sufficiently smallSD & h

9. output the solution SD

The value of the noncentrality parameter δ in Step 5 may be approximated by

When σ�0 is determined by any means other than a statistical evaluation, SD must be calculated
differently.

EXAMPLE 20.13

Problem: Assume the signal, , is the net count for a radioactivity measurement, and its�S
variance is given by an expression of the form

aS 2 % bS % c

The coefficient b is assumed to be 1, because the term bS represents the Poisson counting vari-
ance due to activity in the sample (see Section 20.4.2.2). The term c is estimated by , the�σ2

0
variance of the net signal observed when analyte-free samples are analyzed. The coefficient a
is estimated to be 0.052, and represents a 5 % coefficient of variation, which is observed at
high analyte concentrations. Assume σ�0 is evaluated from 7 replicate blank measurements and
is found to be 9.1844, as in the preceding example. Use the iterative algorithm described above
to approximate the minimum detectable net signal, SD.

Solution: The first two steps are performed as follows.

σ0 ' 9.1844
SD ' 1.943 × 9.1844 ' 17.85

Then the first iteration of the loop is performed as follows.
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SD ' SC % z1&β σ
2( �S | S ' SD) (20.69)

σ2( �S) ' aS 2 % bS % c (20.70)

SD '
1
Iβ

SC %
z 2

1&βb
2

% z1&β bSC %
z 2

1&βb
2

4
% aS 2

C % Iβc (20.71)

σD ' (0.05)2(17.85)2 % 17.85 % (9.1844)2 ' 10.149

t1&α(ν) ×
σ0

σD

' 1.943 × 9.1844
10.149

' 1.7584

δ ' 1.7584 × 1 &
1

(4)(6)
% 1.645 1 %

1.75842

(2)(6)
' 3.5298

SD ' (3.5298)(10.149) ' 35.822

Subsequent iterations produce the sequence of approximations

37.242   37.354   37.363   37.364   37.364   ...

The sequence converges to 37.364, which is the approximate value of the minimum detectable
net signal.

20A.3.2 Poisson Counting

Another equation for SD, which was described in Section 20.4.2.2, is

where SC = z1 ! ασ0 and σ2(  | S = SD) denotes the variance of the measured signal, , when the�S �S
true mean signal, S, equals SD. This equation is the basis for formulas that are commonly used for
SD when the Poisson-normal approximation is assumed. Regardless of whether the signal follows
the pure Poisson model or has non-Poisson variance, the variance of  can usually be expressed�S
in the form

as in Example 20.13, where S denotes the true mean net signal and the constants a, b, and c do
not depend on S. In this case, the minimum detectable net signal is given by

where . Iβ ' 1 & z 2
1&βa
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[SC] ' 0.4
tS

tB

& 1 %
1.6452

4
1 %

tS

tB

% 1.645 (9 % 0.4)
tS

tB

1 %
tS

tB

(20.72)

SD ' SC %
z 2

1&β

2
% z1&β

z 2
1&β

4
% SC % RB tS 1 %

tS

tB

(20.73)

Equation 20.69 is often used even when SC is calculated using one of the formulas presented
above for low-background Poisson counting, with RB tB substituted for the blank count NB, but in
this case SD may be underestimated because of the fact that the calculated value of SC varies from
measurement to measurement. One option for obtaining a more conservative estimate of SD is to
substitute a conservative value of SC, which will be denoted here by [SC]. For Poisson counting,
one method of obtaining [SC] is to use the value of SC calculated from the largest blank count NB
likely to be observed, given the assumed mean blank count rate RB  (e.g., use Table 20.1 with
RB tB replacing RB tS and NB replacing yC in the column headings). To calculate SD, one may sub-
stitute [SC] for SC in Equation 20.71.

Note that [SC] is not used to make detection decisions. It is used only to calculate SD.

For example, suppose α = β = 0.05, the assumed mean blank count rate is RB = 8 × 10!4 s!1, and
the blank count time is tB = 6000 s. Then RB tB = 4.8 counts. Using Table 20.1, one finds 4.8 in
the first column between 4.695 and 5.425, and reads the value 9 from the second column. So, 9 is
the largest value of NB likely to be observed when measuring a blank. Now, if Stapleton�s
approximation is used to calculate SC when making a detection decision, the value of [SC] used to
calculate SD is given by the following equation.

So, if tS = tB, then [SC] = 8.49 counts.

PURE POISSON COUNTING

As previously noted, counting data never follow the Poisson model exactly, but the model can be
used to calculate SD if the variance of the blank signal is approximately Poisson and a conserva-
tive value of the sensitivity factor is used to convert SD to xD. Equation 20.28, which is repeated
below as Equation 20.73, shows how to calculate SD using the pure Poisson model.

When Formula A is used for the critical net count, and α = β, this expression for SD simplifies to
. Example 20.5 in Section 20.4.2.3 illustrates the use of the latter expression. z 2

1&β % 2SC
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SD '
(z1&α % z1&β)

2

4
1 %

tS

tB

% (z1&α % z1&β) RB tS 1 %
tS

tB

(20.74)

SD ' 5.41 % 4.65 RB tS (20.75)

Power ' 1 & j
4

n'0

(RB tB)n e&RB tB

n! j
yC(n)

k'0

(RB tS%S)k e&(RB tS%S)

k!

' 1 & exp(&RB (tS% tB)&S) j
4

n'0

(RB tB)n

n! j
yC(n)

k'0

(RB tS%S)k

k!

(20.76)

DETECTION LIMITS FOR THE STAPLETON APPROXIMATION

When the Stapleton approximation is used for SC, the minimum detectable net count SD may be
calculated using Equation 20.73, but when the pure Poisson model is assumed, a better estimate
is given by the formula

Equation 20.74 also gives a better approximation of SD even when Formula C is used for the
critical value as long as the ratio of count times tB / tS is not too far from 1 (see Table 20.3). It is
recommended by ISO 11929-1 in a slightly different but equivalent form.

When α = β = 0.05 and tB = tS, the preceding equation becomes

PRECISE CALCULATION OF SD

When the pure Poisson model is assumed, with no other sources of variance, the mean blank
count rate RB and the analyte detection criteria completely determine SD. So, in principle, a
computer program can be written to calculate SD precisely. The calculation is most easily
described when the critical net count is expressed in terms of NB but not NS (e.g., SC as defined by
Formulas A�C, the Stapleton approximation, and the exact test). Then, at any specified value S
of the mean net signal, the power of the detection test can be computed using either of the
following expressions:

where yC(n) denotes the value of yC (or SC + NB tS / tB) when NB = n. Terms of the infinite sum
must be accumulated only until the cumulative Poisson probability, (RBtB)m /m!,e&RB tB'n

m'0
approaches 1. Given a software procedure to compute Equation 20.76, the value of SD may be
determined using an iterative algorithm, such as Newton�s method or bisection, which calculates
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Power ' 1 & e&RB tB j
4

n'0

(RB tB)n

n! j
yC(n)

k'0
f(k;S) (20.77)

f(k;S) ' 1
2δx

P k % 1, RB tS % S 1 %
δ

µA

& P k % 1, RB tS % S 1 &
δ

µ A
(20.78)

the power at trial values of S until the correct value is found where the power equals 1 ! β (e.g.
see Burden and Faires, 1993).

Since no sources of variance except Poisson counting statistics are being considered here, a con-
servative value of the sensitivity factor should be used when converting SD to the minimum
detectable concentration, xD.

A procedure of the type described above generated the true values of SD for Table 20.3, which
shows both the estimated and true values of SD obtained when Formulas A and C and the
Stapleton approximation are used for the critical value. The estimated values of SD in this table
are based on values of SC calculated using the true mean blank count, not the upper bound [NB].
The use of [NB] would produce larger estimates.

If one can assume that the sensitivity, A, has a particular distribution, such as a rectangular or
triangular distribution, then it is still possible to calculate SD precisely in software, although the
mathematics is less straightforward than that needed when only Poisson variance is considered.
At any specified value, S, of the mean net signal, the detection power equals

where f(k,S) is the probability that the gross count will equal k when the mean net signal is S.
Given an assumed distribution for A, the value of f(k,S) can be calculated in software. For
example, if the sensitivity has a rectangular distribution with mean µA and half-width δ, then

where P(@, @) denotes the incomplete gamma function. Other combinations of the incomplete
gamma function appear when different polygonal distributions are assumed (e.g., triangular).

To the extent that this approach accounts for the variance of the sensitivity, A, it becomes unnec-
essary to assume a conservative value of A when converting SD to xD. Instead, one uses the best
available estimates of the actual distribution parameters (e.g., µA and δ above).
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APPENDIX G
STATISTICAL TABLES

Table G.1 � Quantiles of the standard normal distribution

p 1 ! p zp p 1 ! p zp
0.51 0.49 0.02507 0.76 0.24 0.7063
0.52 0.48 0.05015 0.77 0.23 0.7388
0.53 0.47 0.07527 0.78 0.22 0.7722
0.54 0.46 0.1004 0.79 0.21 0.8064
0.55 0.45 0.1257 0.80 0.20 0.8416
0.56 0.44 0.1510 0.81 0.19 0.8779
0.57 0.43 0.1764 0.82 0.18 0.9154
0.58 0.42 0.2019 0.83 0.17 0.9542
0.59 0.41 0.2275 0.84 0.16 0.9945
0.60 0.40 0.2533 0.85 0.15 1.036
0.61 0.39 0.2793 0.86 0.14 1.080
0.62 0.38 0.3055 0.87 0.13 1.126
0.63 0.37 0.3319 0.88 0.12 1.175
0.64 0.36 0.3585 0.89 0.11 1.227
0.65 0.35 0.3853 0.90 0.10 1.282
0.66 0.34 0.4125 0.91 0.09 1.341
0.67 0.33 0.4399 0.92 0.08 1.405
0.68 0.32 0.4677 0.93 0.07 1.476
0.69 0.31 0.4959 0.94 0.06 1.555
0.70 0.30 0.5244 0.95 0.05 1.645
0.71 0.29 0.5534 0.96 0.04 1.751
0.72 0.28 0.5828 0.97 0.03 1.881
0.73 0.27 0.6128 0.98 0.02 2.054
0.74 0.26 0.6433 0.99 0.01 2.326
0.75 0.25 0.6745 1.00 0.00 4

Note:  z1 & p ' &zp

(Continued on next page)
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Table G.1 (Continued) � Quantiles of the standard normal distribution

p 1 ! p zp
0.90 0.10 1.282
0.95 0.05 1.645
0.975 0.025 1.960
0.99 0.01 2.326
0.995 0.005 2.576
0.9975 0.0025 2.807
0.999 0.001 3.090
0.9995 0.0005 3.291
0.99975 0.00025 3.481
0.9999 0.0001 3.719

p 1 − p

0 zp

p 'Φ(zp) '
1
2π

zp

&4
e &x 2/2 dx ' 1

2
%

e &z 2
p / 2

2π
zp %

z 3
p

3
%

z 5
p

3 @5
%

z 7
p

3 @5 @7
% @@@
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Table G.2 � Quantiles of Student�s t distribution

Degrees
of

Freedom
p = 0.90

1 ! p = 0.10
0.95
0.05

0.975
0.025

0.98
0.02

0.99
0.01

0.995
0.005

0.9975
0.0025

1 3.078 6.314 12.706 15.895 31.821 63.657 127.321tp '

2 1.886 2.920 4.303 4.849 6.965 9.925 14.089
3 1.638 2.353 3.182 3.482 4.541 5.841 7.453
4 1.533 2.132 2.776 2.999 3.747 4.604 5.598
5 1.476 2.015 2.571 2.757 3.365 4.032 4.773
6 1.440 1.943 2.447 2.612 3.143 3.707 4.317
7 1.415 1.895 2.365 2.517 2.998 3.499 4.029
8 1.397 1.860 2.306 2.449 2.896 3.355 3.833
9 1.383 1.833 2.262 2.398 2.821 3.250 3.690

10 1.372 1.812 2.228 2.359 2.764 3.169 3.581
11 1.363 1.796 2.201 2.328 2.718 3.106 3.497
12 1.356 1.782 2.179 2.303 2.681 3.055 3.428
13 1.350 1.771 2.160 2.282 2.650 3.012 3.372
14 1.345 1.761 2.145 2.264 2.624 2.977 3.326
15 1.341 1.753 2.131 2.249 2.602 2.947 3.286
16 1.337 1.746 2.120 2.235 2.583 2.921 3.252
17 1.333 1.740 2.110 2.224 2.567 2.898 3.222
18 1.330 1.734 2.101 2.214 2.552 2.878 3.197
19 1.328 1.729 2.093 2.205 2.539 2.861 3.174
20 1.325 1.725 2.086 2.197 2.528 2.845 3.153
21 1.323 1.721 2.080 2.189 2.518 2.831 3.135
22 1.321 1.717 2.074 2.183 2.508 2.819 3.119
23 1.319 1.714 2.069 2.177 2.500 2.807 3.104
24 1.318 1.711 2.064 2.172 2.492 2.797 3.091
25 1.316 1.708 2.060 2.167 2.485 2.787 3.078
26 1.315 1.706 2.056 2.162 2.479 2.779 3.067
27 1.314 1.703 2.052 2.158 2.473 2.771 3.057
28 1.313 1.701 2.048 2.154 2.467 2.763 3.047
29 1.311 1.699 2.045 2.150 2.462 2.756 3.038
30 1.310 1.697 2.042 2.147 2.457 2.750 3.030
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Table G.2 (Continued) � Quantiles of Student�s t distribution

Degrees
of

Freedom
p = 0.90

1 ! p = 0.10
0.95
0.05

0.975
0.025

0.98
0.02

0.99
0.01

0.995
0.005

0.9975
0.0025

31 1.309 1.696 2.040 2.144 2.453 2.744 3.022
32 1.309 1.694 2.037 2.141 2.449 2.738 3.015
33 1.308 1.692 2.035 2.138 2.445 2.733 3.008
34 1.307 1.691 2.032 2.136 2.441 2.728 3.002
35 1.306 1.690 2.030 2.133 2.438 2.724 2.996
36 1.306 1.688 2.028 2.131 2.434 2.719 2.990
37 1.305 1.687 2.026 2.129 2.431 2.715 2.985
38 1.304 1.686 2.024 2.127 2.429 2.712 2.980
39 1.304 1.685 2.023 2.125 2.426 2.708 2.976
40 1.303 1.684 2.021 2.123 2.423 2.704 2.971
41 1.303 1.683 2.020 2.121 2.421 2.701 2.967
42 1.302 1.682 2.018 2.120 2.418 2.698 2.963
43 1.302 1.681 2.017 2.118 2.416 2.695 2.959
44 1.301 1.680 2.015 2.116 2.414 2.692 2.956
45 1.301 1.679 2.014 2.115 2.412 2.690 2.952
46 1.300 1.679 2.013 2.114 2.410 2.687 2.949
47 1.300 1.678 2.012 2.112 2.408 2.685 2.946
48 1.299 1.677 2.011 2.111 2.407 2.682 2.943
49 1.299 1.677 2.010 2.110 2.405 2.680 2.940
50 1.299 1.676 2.009 2.109 2.403 2.678 2.937
60 1.296 1.671 2.000 2.099 2.390 2.660 2.915
70 1.294 1.667 1.994 2.093 2.381 2.648 2.899
80 1.292 1.664 1.990 2.088 2.374 2.639 2.887
90 1.291 1.662 1.987 2.084 2.368 2.632 2.878

100 1.290 1.660 1.984 2.081 2.364 2.626 2.871
200 1.286 1.653 1.972 2.067 2.345 2.601 2.839
300 1.284 1.650 1.968 2.063 2.339 2.592 2.828
400 1.284 1.649 1.966 2.060 2.336 2.588 2.823
500 1.283 1.648 1.965 2.059 2.334 2.586 2.820
4 1.282 1.645 1.960 2.054 2.326 2.576 2.807
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Table G.4 � Critical values for the nonrandomized exact test

NB

α = 0.01 α = 0.05
tB / tS tB / tS

1 2 3 4 5 1 2 3 4 5
0 6 4 3 2 2 4 2 2 1 1
1 9 5 4 3 3 6 3 3 2 2
2 11 6 5 4 3 8 4 3 3 2
3 13 7 5 5 4 9 5 4 3 3
4 14 8 6 5 4 11 6 4 4 3
5 16 9 7 6 5 12 7 5 4 3
6 18 10 8 6 5 14 8 6 5 4
7 19 11 8 7 6 15 8 6 5 4
8 21 12 9 7 6 17 9 7 5 5
9 23 13 9 8 7 18 10 7 6 5

10 24 14 10 8 7 19 11 8 6 5
11 26 14 10 8 7 21 11 8 7 6
12 27 15 11 9 8 22 12 9 7 6
13 28 16 12 9 8 23 13 9 7 6
14 30 17 12 10 8 25 14 10 8 6
15 31 17 13 10 9 26 14 10 8 7
16 33 18 13 11 9 27 15 11 8 7
17 34 19 14 11 9 29 16 11 9 7
18 35 20 14 11 10 30 16 12 9 8
19 37 20 15 12 10 31 17 12 9 8
20 38 21 15 12 10 32 18 12 10 8
21 40 22 16 13 11 34 18 13 10 9
22 41 23 16 13 11 35 19 13 11 9
23 42 23 17 13 11 36 19 14 11 9
24 44 24 17 14 12 37 20 14 11 9
25 45 25 18 14 12 39 21 15 12 10
26 46 25 18 15 12 40 21 15 12 10
27 48 26 19 15 13 41 22 16 12 10
28 49 27 19 15 13 42 23 16 13 10
29 50 27 20 16 13 44 23 16 13 11
30 51 28 20 16 13 45 24 17 13 11
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Table G.4 (Continued) � Critical values for the nonrandomized exact test

NB

α = 0.01 α = 0.05
tB / tS tB / tS

1 2 3 4 5 1 2 3 4 5
31 53 29 21 16 14 46 25 17 14 11
32 54 29 21 17 14 47 25 18 14 12
33 55 30 22 17 14 48 26 18 14 12
34 57 31 22 17 15 50 26 19 15 12
35 58 32 22 18 15 51 27 19 15 12
36 59 32 23 18 15 52 28 19 15 13
37 60 33 23 19 16 53 28 20 16 13
38 62 33 24 19 16 54 29 20 16 13
39 63 34 24 19 16 56 30 21 16 13
40 64 35 25 20 16 57 30 21 17 14
41 65 35 25 20 17 58 31 22 17 14
42 67 36 26 20 17 59 31 22 17 14
43 68 37 26 21 17 60 32 22 17 14
44 69 37 27 21 18 61 33 23 18 15
45 70 38 27 21 18 63 33 23 18 15
46 72 39 27 22 18 64 34 24 18 15
47 73 39 28 22 18 65 34 24 19 16
48 74 40 28 22 19 66 35 24 19 16
49 75 41 29 23 19 67 36 25 19 16
50 77 41 29 23 19 68 36 25 20 16
51 78 42 30 23 20 70 37 26 20 17
52 79 43 30 24 20 71 37 26 20 17
53 80 43 31 24 20 72 38 26 21 17
54 82 44 31 24 20 73 39 27 21 17
55 83 45 31 25 21 74 39 27 21 18
56 84 45 32 25 21 75 40 28 22 18
57 85 46 32 25 21 77 40 28 22 18
58 86 46 33 26 22 78 41 29 22 18
59 88 47 33 26 22 79 42 29 23 19
60 89 48 34 26 22 80 42 29 23 19
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Table G.4 (Continued) � Critical values for the nonrandomized exact test

NB

α = 0.01 α = 0.05
tB / tS tB / tS

1 2 3 4 5 1 2 3 4 5
61 90 48 34 27 22 81 43 30 23 19
62 91 49 34 27 23 82 43 30 23 19
63 92 50 35 27 23 83 44 31 24 20
64 94 50 35 28 23 85 45 31 24 20
65 95 51 36 28 23 86 45 31 24 20
66 96 51 36 28 24 87 46 32 25 20
67 97 52 37 29 24 88 46 32 25 21
68 98 53 37 29 24 89 47 33 25 21
69 100 53 37 29 25 90 47 33 26 21
70 101 54 38 30 25 91 48 33 26 21
71 102 55 38 30 25 93 49 34 26 22
72 103 55 39 30 25 94 49 34 26 22
73 104 56 39 31 26 95 50 35 27 22
74 106 56 40 31 26 96 50 35 27 22
75 107 57 40 31 26 97 51 35 27 23
76 108 58 40 32 26 98 52 36 28 23
77 109 58 41 32 27 99 52 36 28 23
78 110 59 41 32 27 100 53 37 28 23
79 112 59 42 33 27 102 53 37 29 24
80 113 60 42 33 27 103 54 37 29 24
81 114 61 43 33 28 104 54 38 29 24
82 115 61 43 34 28 105 55 38 30 24
83 116 62 43 34 28 106 56 38 30 25
84 118 63 44 34 28 107 56 39 30 25
85 119 63 44 35 29 108 57 39 30 25
86 120 64 45 35 29 110 57 40 31 25
87 121 64 45 35 29 111 58 40 31 26
88 122 65 45 36 30 112 58 40 31 26
89 123 66 46 36 30 113 59 41 32 26
90 125 66 46 36 30 114 60 41 32 26
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Table G.4 (Continued) � Critical values for the nonrandomized exact test

NB

α = 0.01 α = 0.05
tB / tS tB / tS

1 2 3 4 5 1 2 3 4 5
91 126 67 47 37 30 115 60 42 32 26
92 127 67 47 37 31 116 61 42 33 27
93 128 68 48 37 31 117 61 42 33 27
94 129 69 48 37 31 118 62 43 33 27
95 130 69 48 38 31 120 62 43 33 27
96 132 70 49 38 32 121 63 44 34 28
97 133 70 49 38 32 122 64 44 34 28
98 134 71 50 39 32 123 64 44 34 28
99 135 72 50 39 32 124 65 45 35 28

100 136 72 50 39 33 125 65 45 35 29
101 137 73 51 40 33 126 66 46 35 29
102 139 73 51 40 33 127 66 46 35 29
103 140 74 52 40 33 129 67 46 36 29
104 141 75 52 41 34 130 68 47 36 30
105 142 75 52 41 34 131 68 47 36 30
106 143 76 53 41 34 132 69 47 37 30
107 144 76 53 42 34 133 69 48 37 30
108 146 77 54 42 35 134 70 48 37 31
109 147 78 54 42 35 135 70 49 38 31
110 148 78 55 43 35 136 71 49 38 31
111 149 79 55 43 35 137 72 49 38 31
112 150 79 55 43 36 139 72 50 38 32
113 151 80 56 43 36 140 73 50 39 32
114 152 81 56 44 36 141 73 51 39 32
115 154 81 57 44 36 142 74 51 39 32
116 155 82 57 44 37 143 74 51 40 32
117 156 82 57 45 37 144 75 52 40 33
118 157 83 58 45 37 145 76 52 40 33
119 158 84 58 45 37 146 76 52 40 33
120 159 84 59 46 38 147 77 53 41 33
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Table G.5 � Summary of probability distributions

Distribution Parameters Values Probability Function Mean Standard Deviation

Binomial N, p k ' 0,1,2,ÿ,N
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Normal µ, σ x 0 (&4,4)
1

σ 2π
e &(x & µ)2 /2σ2

µ σ

Log-Normal , µg σg x 0 (0,4)
exp &ln(x /µg)

2 2(lnσg)
2
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µg e 2(lnσg)2

& e (lnσg)2

Student�s t ν x 0 (&4,4)
Γ (ν % 1) 2
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     Γ(x) denotes the gamma function. Γ(1/2) = , Γ(1) = 1, and Γ(x + 1) = x @ Γ(x) for .π x > 0




